En un avance crucial para la física cuántica, investigadores de la Universidad del Sur de California (USC) han demostrado un nuevo protocolo de detección que podría revolucionar la forma en que percibimos señales extremadamente débiles. Publicado en la revista Nature Communications, el estudio presenta un método que contrarresta los efectos de la decoherencia, uno de los principales obstáculos para la sensibilidad de los sensores cuánticos.
La detección cuántica aprovecha sistemas como cúbits, átomos o partículas de luz para medir fenómenos físicos con una precisión que supera a los sensores clásicos. Sin embargo, el entorno genera ruido que desordena el estado cuántico, disminuyendo la fiabilidad de las mediciones. "La decoherencia borra las señales que tratamos de detectar", explicó Eli Levenson-Falk, profesor de física, astronomía e ingeniería en la USC y autor principal del estudio.
El equipo de la USC propuso un protocolo de coherencia estabilizada que preserva temporalmente una propiedad crucial del cúbit, permitiendo que la señal de detección crezca más antes de perderse. Esta técnica, basada en la teoría desarrollada junto a Daniel Lidar y Kumar Saurav, logra estabilizar la evolución cuántica sin necesidad de retroalimentación activa ni recursos de control adicionales.
"Es como oír un susurro en medio de un concierto de rock", ilustró Matilda Hecht, estudiante de doctorado y autora principal del estudio. "Nuestro protocolo amplifica ese susurro antes de que el ruido ambiente lo ahogue".
Aplicado en un cúbit superconductor, el método proporcionó una mejora del 165% en la sensibilidad de detección en comparación con la interferometría de Ramsey, el estándar convencional. Los modelos teóricos sugieren que, en algunos sistemas, el incremento podría acercarse al 196%.
El experimento no solo muestra que la detección cuántica puede ser mejorada de manera eficiente y práctica, sino que abre la puerta a nuevas aplicaciones en imágenes médicas avanzadas, sensores gravitacionales, relojes cuánticos ultraprecisos y la investigación fundamental en física de partículas.
"Hemos demostrado que no necesitamos tecnologías exóticas o control complejo para mejorar la detección cuántica", señaló Levenson-Falk. "Existen caminos directos para extraer más información de los sistemas cuánticos actuales, y su impacto en el mundo real podría ser inmediato".
El trabajo fue financiado por instituciones como el Laboratorio de Investigación del Ejército de EE. UU., la Fundación Nacional de Ciencias y la Oficina de Investigación Naval. Los dispositivos experimentales fueron desarrollados en el Laboratorio Lincoln del MIT como parte del proyecto Superconducting Qubits at Lincoln Laboratory (SQUILL).
Referencias: Nature Communications | Universidad del Sur de California (USC)