Erupciones volcánicas submarinas podrían estar alterando los niveles de oxígeno en los océanos
Investigadores analizan cómo erupciones volcánicas submarinas influyen en los niveles de oxígeno marino y podrían afectar ecosistemas oceánicos
Autor - Aldo Venuta Rodríguez
4 min lectura
Los océanos, responsables de más del 50% del oxígeno que respiramos, están siendo alterados por múltiples factores relacionados con el cambio climático. Sin embargo, una fuente poco
A diferencia de las erupciones terrestres, que emiten gases y cenizas a la atmósfera, las erupciones submarinas liberan calor, dióxido de carbono, compuestos de azufre y metales directamente en la columna de agua. Estas emisiones modifican localmente la temperatura y la acidez del entorno, pero también pueden desencadenar reacciones biogeoquímicas que impactan la producción y el consumo de oxígeno en la zona afectada. Dependiendo de su magnitud y frecuencia, podrían incluso modificar las condiciones de zonas más amplias del océano profundo.
Zonas de mínima oxigenación: posibles epicentros de impacto
Uno de los principales focos de preocupación es el efecto que estas erupciones tienen sobre las denominadas “zonas de mínimo oxígeno” (OMZ, por sus siglas en inglés), regiones oceánicas naturalmente pobres en oxígeno situadas entre los 200 y 1.000 metros de profundidad. Si bien estas zonas son fenómenos normales, su expansión se ha acelerado debido al calentamiento global. Las erupciones volcánicas podrían intensificar este fenómeno al liberar nutrientes que estimulan el crecimiento de fitoplancton, cuya descomposición consume grandes cantidades de oxígeno.
Algunos estudios recientes realizados en el Pacífico y el Índico han detectado disminuciones localizadas de oxígeno tras episodios eruptivos importantes, como los del volcán Submarino de Tonga en 2022 o el Axial Seamount en el noroeste del Pacífico. Aunque estos cambios suelen ser temporales, la frecuencia de las erupciones y su intensidad podrían hacer que estos efectos se acumulen, alterando procesos ecológicos como la migración vertical de peces y la distribución de especies sensibles al oxígeno.
Interacciones complejas entre calor, química y biología
El impacto de una erupción submarina va más allá del simple aumento térmico. El calor liberado puede intensificar la estratificación del agua, dificultando la mezcla vertical que normalmente ayuda a redistribuir el oxígeno desde la superficie hasta las capas más profundas. Al mismo tiempo, los compuestos químicos liberados, como el sulfuro de hidrógeno o el hierro, pueden alterar la dinámica microbiana y promover especies que consumen oxígeno en lugar de producirlo.
Por otra parte, las bacterias quimiosintéticas que prosperan cerca de las fuentes hidrotermales asociadas a volcanes pueden tener un papel doble. Por un lado, consumen oxígeno en sus procesos metabólicos; por otro, su presencia podría sostener cadenas alimentarias independientes de la luz solar, creando microecosistemas resilientes pero de bajo rendimiento en términos de oxigenación general del océano.
Implicaciones para el clima y la biodiversidad marina
Aunque las erupciones volcánicas submarinas no se consideran actualmente un factor dominante en la pérdida de oxígeno oceánico, su papel podría ser más relevante en un futuro condicionado por el calentamiento global. La combinación de estratificación térmica, acidificación y cambios en la productividad biológica crea un contexto favorable para que incluso alteraciones puntuales tengan efectos desproporcionados en ciertas regiones.
Además, estos fenómenos pueden afectar la biodiversidad de manera indirecta. Muchas especies marinas, especialmente peces pelágicos y cefalópodos, son extremadamente sensibles a la disminución de oxígeno. Cambios sutiles en sus hábitats pueden afectar sus rutas migratorias, tasas de reproducción y supervivencia juvenil, provocando alteraciones en la red trófica y en las pesquerías humanas.
Para los científicos, el desafío está en cuantificar con mayor precisión estos impactos. La mayoría de los volcanes submarinos no están monitoreados en tiempo real, y los efectos sobre el oxígeno pueden tardar semanas o meses en detectarse. Iniciativas como los programas de observación de fondos oceánicos, drones submarinos autónomos y sensores biogeoquímicos están siendo fundamentales para llenar este vacío de datos.
En suma, entender el papel de las erupciones volcánicas submarinas en la dinámica del oxígeno marino no solo es relevante para la oceanografía, sino también para anticipar los impactos del cambio climático en ecosistemas que sostienen la vida marina y los medios de subsistencia de millones de personas.
Continúa informándote
El calentamiento global reduce la capacidad de los ecosistemas para regenerarse
Un análisis de casi un siglo de datos revela que la rotación de especies se ha desacelerado pese al calentamiento global, señal de ecosistemas más pobres y con menor capacidad de renovación
Miles de especies exóticas podrían invadir el Ártico a medida que suben las temperaturas
El calentamiento y el turismo facilitan la llegada de plantas exóticas al Ártico. Un estudio identifica más de 2.500 especies con potencial para establecerse
La prohibición del plomo en la gasolina funcionó: el cabello humano lo confirma
Un estudio con cabello humano de hace un siglo muestra que la prohibición del plomo en gasolina y pinturas redujo la exposición hasta cien veces en EE. UU.
Los osos polares de Svalbard mejoran su condición física a pesar de la pérdida de hielo marino
Un estudio en Svalbard revela que los osos polares mejoraron su condición física pese a la reducción del hielo marino, un resultado inesperado en pleno calentamiento del Ártico
Qué es la contaminación lumínica y por qué está borrando las estrellas de nuestras ciudades
Qué es la contaminación lumínica, por qué desperdicia energía y cómo afecta al sueño, la biodiversidad y la observación astronómica. Claves para entender un problema creciente en las ciudades
El deshielo antártico podría reducir la capacidad del océano para absorber CO₂, según un estudio
Un estudio revela que el retroceso del hielo en la Antártida occidental reduce la fertilización de algas y limita la absorción de CO₂ en el Océano Austral.