Escapes submarinos de metano: amenaza climática, ecológica y geológica

Vastos depósitos de metano bajo el lecho marino se están desestabilizando, amenazando con acelerar el cambio climático, alterar ecosistemas únicos y generar riesgos geológicos.

Autor - Aldo Venuta Rodríguez

5 min lectura

Fragmento de hidrato de metano extraído del lecho marino, con estructura cristalina visible.
Hidrato de metano con estructura poligonal expuesto tras ser extraído de sedimentos marinos profundos.

Bajo la inmensa presión y el frío de las profundidades oceánicas yace un gigante dormido: billones de toneladas de metano atrapadas en estructuras cristalinas conocidas como hidratos de metano. Estos depósitos, distribuidos en los márgenes continentales y bajo el permafrost ártico, representan una de las mayores reservas de carbono orgánico del planeta. Sin embargo, el calentamiento global está alterando las delicadas condiciones que mantienen estable este metano congelado, provocando fugas o "escapes submarinos" que liberan este potente gas de efecto invernadero a la columna de agua, con implicaciones que resuenan desde el clima global hasta la estabilidad del propio lecho marino.

Los hidratos de metano son compuestos sólidos similares al hielo, formados por moléculas de metano encapsuladas dentro de una red de moléculas de agua. Su formación requiere condiciones muy específicas: bajas temperaturas y altas presiones, típicas de los sedimentos marinos a profundidades superiores a los 400-500 metros, o en el permafrost submarino de regiones polares. El metano proviene principalmente de la descomposición de materia orgánica por microorganismos en los sedimentos, o de filtraciones desde yacimientos de gas natural más profundos. Durante milenios, estos hidratos han permanecido estables, sellando enormes cantidades de metano bajo el fondo oceánico.

La principal preocupación radica en el vínculo directo con el cambio climático. A medida que las temperaturas oceánicas aumentan, especialmente en las aguas intermedias y profundas, el calor penetra lentamente en los sedimentos, desestabilizando los hidratos. Al "derretirse", liberan metano gaseoso. Si este metano alcanza la atmósfera, su impacto es considerable: es un gas de efecto invernadero con un potencial de calentamiento unas 25-30 veces superior al del dióxido de carbono (CO₂) en una escala de 100 años. Existe el temor a un peligroso ciclo de retroalimentación positiva: el calentamiento libera metano, que causa más calentamiento, liberando aún más metano.

Afortunadamente, el océano posee mecanismos de amortiguación. Gran parte del metano liberado desde las profundidades no llega directamente a la atmósfera. A medida que las burbujas ascienden, una porción significativa se disuelve en el agua y es consumida por bacterias especializadas, conocidas como metanótrofas. Estos microorganismos oxidan el metano, convirtiéndolo en dióxido de carbono (CO₂), un gas de efecto invernadero menos potente. Si bien esto mitiga el impacto atmosférico inmediato del metano, el CO₂ resultante contribuye igualmente al calentamiento global a largo plazo y, de forma más directa, a la acidificación de las aguas oceánicas circundantes.

Publicidad

Paradójicamente, estas fugas de metano también son fuente de vida. En los llamados "manantiales fríos" o "cold seeps", donde el metano y otros compuestos reducidos como el sulfuro de hidrógeno emanan del lecho marino, florecen ecosistemas únicos. En lugar de depender de la luz solar, la base de estas cadenas tróficas es la quimiosíntesis: microorganismos que obtienen energía de las reacciones químicas con el metano y los sulfuros. Estos oasis de profundidad albergan comunidades densas y extrañas de gusanos tubícolas gigantes, almejas, mejillones y otras especies adaptadas a este entorno químicamente extremo, representando puntos calientes de biodiversidad en el oscuro abismo.

No obstante, el impacto ecológico general es complejo. Mientras los 'cold seeps' sustentan vida especializada, la liberación de metano y su posterior oxidación a CO₂ exacerban el problema global de la acidificación oceánica. El descenso del pH del agua marina dificulta la formación de conchas y esqueletos de carbonato cálcico para organismos como corales, moluscos y cierto plancton, pilares de muchas redes tróficas marinas. Por tanto, un aumento generalizado de las fugas de metano podría tener efectos perjudiciales sobre la biodiversidad marina más allá de los propios 'seeps'.

Más allá de las implicaciones climáticas y biológicas, la desestabilización de los hidratos de metano supone un riesgo geológico tangible. Los hidratos actúan como un cemento que ayuda a mantener cohesionados los sedimentos en las pendientes submarinas de los márgenes continentales. La disociación de estos hidratos puede debilitar drásticamente la estructura del sedimento, aumentando el riesgo de deslizamientos submarinos. Estos deslizamientos pueden dañar infraestructuras críticas como cables de comunicación submarinos y oleoductos, y en casos extremos y a gran escala, tienen el potencial teórico de desplazar suficiente agua como para generar tsunamis, aunque este último escenario se considera de baja probabilidad pero alto impacto.

La vigilancia y comprensión de estos fenómenos remotos es un desafío científico y tecnológico considerable. Los investigadores emplean una combinación de técnicas de mapeo del fondo marino con sonar, análisis geoquímicos del agua y los sedimentos, y el despliegue de vehículos operados remotamente (ROVs) y autónomos (AUVs) para observar y muestrear las zonas de escape. Los observatorios submarinos permanentes y los modelos numéricos avanzados son cruciales para monitorizar cambios en tiempo real, evaluar la cantidad de metano liberado y predecir la evolución futura de la estabilidad de los hidratos en un planeta en calentamiento.

Publicidad

En definitiva, los escapes submarinos de metano representan una compleja encrucijada donde interactúan el clima, la vida marina y la geología. Aunque gran parte del metano liberado es procesado dentro del propio océano, el potencial para acelerar el calentamiento global, alterar ecosistemas y generar georiesgos subraya la urgencia de comprender mejor estos procesos. Limitar el calentamiento global antropogénico es fundamental no solo para la atmósfera, sino también para mantener la estabilidad de estos vastos y sensibles reservorios de metano que yacen bajo las olas.

Preguntas frecuentes

¿Qué son los escapes submarinos de metano?

La liberación de gas metano desde depósitos de hidratos (metano congelado) en el fondo marino, a menudo debido al calentamiento del agua.

¿Por qué preocupa su impacto climático?

El metano es un gas de efecto invernadero mucho más potente que el CO₂. Su liberación masiva podría acelerar drásticamente el calentamiento global.

¿Cómo afectan a la vida marina?

Crean ecosistemas únicos (cold seeps) basados en quimiosíntesis, pero su oxidación contribuye a la acidificación del océano, dañando a otras especies.

¿Qué riesgos geológicos presentan?

La pérdida de hidratos debilita los sedimentos marinos, aumentando el riesgo de deslizamientos submarinos que pueden dañar infraestructuras y, raramente, causar tsunamis.

Continúa informándote

Teléfono móvil inclinado sobre una mesa de madera con la pantalla encendida mostrando el logotipo de xAI en fondo oscuro
Tecnología

Elon Musk desmiente el informe sobre una recaudación de 15.000 millones de dólares por parte de xAI

Elon Musk negó que su empresa de inteligencia artificial xAI haya recaudado 15.000 millones de dólares, tras un informe de CNBC que valoraba la compañía en 200.000 millones

Central nuclear moderna junto a la costa del norte de Gales, con torres de enfriamiento emitiendo vapor y colinas verdes alrededor
Energía

Reino Unido construirá su primera minicentral nuclear en el norte de Gales

El Reino Unido selecciona Wylfa, en Gales, como sede de su primer reactor modular pequeño, parte de su plan para fortalecer la seguridad energética y avanzar hacia una red eléctrica libre de carbono

Ilustración de la supernova SN 2024ggi en la galaxia NGC 3621, mostrando una explosión con forma alargada similar a una aceituna
Espacio

El ESO revela la forma de una explosión estelar apenas un día después de su detección

Astrónomos capturan por primera vez la forma única de una supernova, revelando los secretos de la explosión estelar en su fase inicial más temprana

Vista aérea del cráter Jinlin tomada con dron, con marcas del borde y un recuadro mostrando el fondo con fragmentos de granito y una regla amarilla de 20 centímetros
Ciencia

Un gigantesco cráter descubierto en China revela el mayor impacto terrestre de los últimos 10.000 años

Científicos en China descubrieron el cráter Jinlin, de 900 metros de ancho, el mayor impacto terrestre conocido del Holoceno y una pieza clave para entender la historia reciente de la Tierra

Logotipo de NotebookLM en color blanco sobre un fondo violeta con degradado suave
Tecnología

Google potencia NotebookLM con la función “Investigación Profunda” y soporte para nuevos formatos de archivo

Google amplía las capacidades de NotebookLM con la función “Investigación Profunda”, que automatiza búsquedas complejas y añade compatibilidad con documentos de Drive, Word y hojas de cálculo