Logotipo de Iceebook Iceebook - Noticias de Ciencia, Tecnología, Economía y más

Escapes submarinos de metano: amenaza climática, ecológica y geológica

Vastos depósitos de metano bajo el lecho marino se están desestabilizando, amenazando con acelerar el cambio climático, alterar ecosistemas únicos y generar riesgos geológicos.

Autor - Aldo Venuta Rodríguez

5 min lectura

Fragmento de hidrato de metano extraído del lecho marino, con estructura cristalina visible.
Hidrato de metano con estructura poligonal expuesto tras ser extraído de sedimentos marinos profundos.

Bajo la inmensa presión y el frío de las profundidades oceánicas yace un gigante dormido: billones de toneladas de metano atrapadas en estructuras cristalinas conocidas como hidratos de metano. Estos depósitos, distribuidos en los márgenes continentales y bajo el permafrost ártico, representan una de las mayores reservas de carbono orgánico del planeta. Sin embargo, el calentamiento global está alterando las delicadas condiciones que mantienen estable este metano congelado, provocando fugas o "escapes submarinos" que liberan este potente gas de efecto invernadero a la columna de agua, con implicaciones que resuenan desde el clima global hasta la estabilidad del propio lecho marino.

Los hidratos de metano son compuestos sólidos similares al hielo, formados por moléculas de metano encapsuladas dentro de una red de moléculas de agua. Su formación requiere condiciones muy específicas: bajas temperaturas y altas presiones, típicas de los sedimentos marinos a profundidades superiores a los 400-500 metros, o en el permafrost submarino de regiones polares. El metano proviene principalmente de la descomposición de materia orgánica por microorganismos en los sedimentos, o de filtraciones desde yacimientos de gas natural más profundos. Durante milenios, estos hidratos han permanecido estables, sellando enormes cantidades de metano bajo el fondo oceánico.

La principal preocupación radica en el vínculo directo con el cambio climático. A medida que las temperaturas oceánicas aumentan, especialmente en las aguas intermedias y profundas, el calor penetra lentamente en los sedimentos, desestabilizando los hidratos. Al "derretirse", liberan metano gaseoso. Si este metano alcanza la atmósfera, su impacto es considerable: es un gas de efecto invernadero con un potencial de calentamiento unas 25-30 veces superior al del dióxido de carbono (CO₂) en una escala de 100 años. Existe el temor a un peligroso ciclo de retroalimentación positiva: el calentamiento libera metano, que causa más calentamiento, liberando aún más metano.

Afortunadamente, el océano posee mecanismos de amortiguación. Gran parte del metano liberado desde las profundidades no llega directamente a la atmósfera. A medida que las burbujas ascienden, una porción significativa se disuelve en el agua y es consumida por bacterias especializadas, conocidas como metanótrofas. Estos microorganismos oxidan el metano, convirtiéndolo en dióxido de carbono (CO₂), un gas de efecto invernadero menos potente. Si bien esto mitiga el impacto atmosférico inmediato del metano, el CO₂ resultante contribuye igualmente al calentamiento global a largo plazo y, de forma más directa, a la acidificación de las aguas oceánicas circundantes.

Paradójicamente, estas fugas de metano también son fuente de vida. En los llamados "manantiales fríos" o "cold seeps", donde el metano y otros compuestos reducidos como el sulfuro de hidrógeno emanan del lecho marino, florecen ecosistemas únicos. En lugar de depender de la luz solar, la base de estas cadenas tróficas es la quimiosíntesis: microorganismos que obtienen energía de las reacciones químicas con el metano y los sulfuros. Estos oasis de profundidad albergan comunidades densas y extrañas de gusanos tubícolas gigantes, almejas, mejillones y otras especies adaptadas a este entorno químicamente extremo, representando puntos calientes de biodiversidad en el oscuro abismo.

No obstante, el impacto ecológico general es complejo. Mientras los 'cold seeps' sustentan vida especializada, la liberación de metano y su posterior oxidación a CO₂ exacerban el problema global de la acidificación oceánica. El descenso del pH del agua marina dificulta la formación de conchas y esqueletos de carbonato cálcico para organismos como corales, moluscos y cierto plancton, pilares de muchas redes tróficas marinas. Por tanto, un aumento generalizado de las fugas de metano podría tener efectos perjudiciales sobre la biodiversidad marina más allá de los propios 'seeps'.

Más allá de las implicaciones climáticas y biológicas, la desestabilización de los hidratos de metano supone un riesgo geológico tangible. Los hidratos actúan como un cemento que ayuda a mantener cohesionados los sedimentos en las pendientes submarinas de los márgenes continentales. La disociación de estos hidratos puede debilitar drásticamente la estructura del sedimento, aumentando el riesgo de deslizamientos submarinos. Estos deslizamientos pueden dañar infraestructuras críticas como cables de comunicación submarinos y oleoductos, y en casos extremos y a gran escala, tienen el potencial teórico de desplazar suficiente agua como para generar tsunamis, aunque este último escenario se considera de baja probabilidad pero alto impacto.

La vigilancia y comprensión de estos fenómenos remotos es un desafío científico y tecnológico considerable. Los investigadores emplean una combinación de técnicas de mapeo del fondo marino con sonar, análisis geoquímicos del agua y los sedimentos, y el despliegue de vehículos operados remotamente (ROVs) y autónomos (AUVs) para observar y muestrear las zonas de escape. Los observatorios submarinos permanentes y los modelos numéricos avanzados son cruciales para monitorizar cambios en tiempo real, evaluar la cantidad de metano liberado y predecir la evolución futura de la estabilidad de los hidratos en un planeta en calentamiento.

En definitiva, los escapes submarinos de metano representan una compleja encrucijada donde interactúan el clima, la vida marina y la geología. Aunque gran parte del metano liberado es procesado dentro del propio océano, el potencial para acelerar el calentamiento global, alterar ecosistemas y generar georiesgos subraya la urgencia de comprender mejor estos procesos. Limitar el calentamiento global antropogénico es fundamental no solo para la atmósfera, sino también para mantener la estabilidad de estos vastos y sensibles reservorios de metano que yacen bajo las olas.

Continúa informándote

Tanques experimentales para estudiar efectos de contaminación plástica en el agua
Medio Ambiente

La contaminación plástica altera los ecosistemas acuáticos y favorece aguas tóxicas

Un estudio experimental revela que los plásticos derivados del petróleo eliminan organismos clave del agua y facilitan la proliferación de algas tóxicas, mientras que los bioplásticos reducen el impacto ambiental

Lago represado por morrena bajo el glaciar Finger en Glacier Bay
Medio Ambiente

Más de 70.000 lagos glaciares emergen con el calentamiento global

El rápido crecimiento de los lagos glaciares abre oportunidades para agua y energía, pero también plantea riesgos ecológicos y decisiones complejas de gestión a largo plazo

Investigador caminando sobre el hielo junto a un arroyo de deshielo
Medio Ambiente

Científicos descubren que el polvo mineral transportado por el aire acelera el derretimiento del hielo de Groenlandia

Un estudio descubrió que el polvo en el aire fomenta el crecimiento de algas en Groenlandia, reduciendo la reflexión solar y acelerando el deshielo irreversible

Foraminíferos fósiles vistos al microscopio electrónico
Medio Ambiente

El plancton fósil revela que los océanos podrían recuperar su oxígeno en el futuro

Un estudio basado en plancton fósil sugiere que los océanos podrían recuperar niveles de oxígeno a largo plazo, a pesar del calentamiento global, revelando datos del pasado

Vista aérea del municipio de Niscemi con amplias cicatrices de erosión en la ladera
Medio Ambiente

Qué provocó el gran deslizamiento en Sicilia y por qué el terreno sigue cediendo

Un gran deslizamiento en Niscemi obligó a evacuar a 1.500 personas. La causa no es solo la tormenta, sino un terreno inestable con arcillas saturadas que sigue cediendo.

Leonas en entorno natural
Medio Ambiente

Cómo cambian los ecosistemas cuando desaparecen los grandes depredadores

La desaparición de grandes depredadores altera cadenas tróficas completas y desencadena cambios ecológicos profundos que pueden transformar paisajes enteros durante generaciones