Logotipo de Iceebook Iceebook - Noticias de Ciencia, Tecnología, Economía y más

Un estudio reescribe la historia geológica de la Tierra y adelanta la formación de la corteza continental

Científicos liderados por la Universidad Macquarie han revelado que las rocas continentales modernas conservan huellas químicas de hace más de 4.500 millones de años. El hallazgo desafía la cronología tradicional sobre el inicio de la tectónica de placas y sugiere que la corteza primitiva ya tenía la misma huella que los continentes actuales.

Autor - Aldo Venuta Rodríguez

3 min lectura

Muestra de roca que conserva huellas químicas de la protocorteza terrestre.
Pistas en una muestra de roca moderna revelan una firma química que se remonta a los inicios de la Tierra. (Créditos: Morris McLennan, Universidad Macquarie).

El análisis, dirigido por el profesor Simon Turner de la Universidad Macquarie, plantea que la corteza terrestre primitiva, formada hace unos 4.500 millones de años, ya poseía una firma química semejante a la de los continentes actuales. Esta conclusión desafía la visión dominante de que dicha composición solo pudo surgir mediante la subducción de placas tectónicas, un proceso asociado a etapas más tardías de la evolución geológica.

Los investigadores desarrollaron modelos geoquímicos que simulan la Tierra durante el eón Hádico, una época en la que el planeta estaba cubierto por un océano de magma. Según esos cálculos, la corteza original —conocida como protocorteza— podría haber desarrollado de forma natural ciertas huellas químicas sin necesidad de procesos tectónicos complejos.

Uno de los elementos clave del estudio es el niobio, un metal que normalmente se hunde hacia el núcleo bajo condiciones reductoras. Los modelos sugieren que este comportamiento explica por qué las rocas continentales modernas presentan una baja concentración de niobio, una característica que hasta ahora se consideraba exclusiva de zonas de subducción.

“Nos dimos cuenta de que las señales geoquímicas que estamos observando no necesitan de tectónica de placas para explicarse. Aparecen por sí solas en los primeros episodios de formación del núcleo terrestre”, explicó Turner, quien colaboró con investigadores de seis universidades de Australia, Reino Unido y Francia.

Publicidad

Hasta ahora, los científicos habían buscado la primera aparición de esa firma de niobio como indicador del inicio de la tectónica de placas. Sin embargo, los resultados de diversos estudios eran inconsistentes, lo que llevó al equipo a replantearse la pregunta de origen. Este nuevo enfoque ha permitido reconciliar décadas de datos geológicos.

El hallazgo también contribuye a explicar por qué todas las rocas continentales, sin importar su antigüedad, presentan firmas químicas similares. La clave estaría en que esas características se fijaron muy temprano, cuando el núcleo de hierro del planeta estaba todavía en formación y la superficie sufría un intenso bombardeo de meteoritos.

Según Turner, ese escenario habría fragmentado la protocorteza en múltiples trozos. Algunos se habrían engrosado y enriquecido con sílice, formando los primeros núcleos continentales. Otros fragmentos, desplazados lateralmente por fuerzas internas, habrían generado nueva corteza oceánica en los espacios intermedios.

Este modelo sugiere que la tectónica de placas pudo haber funcionado de manera intermitente y desorganizada hasta hace unos 3.800 millones de años, cuando la disminución del bombardeo meteórico permitió el establecimiento de un sistema más estable y autosostenido, como el que rige la dinámica terrestre actual.

Publicidad

“Estamos replanteando desde cero la forma en que se formaron los continentes”, comentó Turner. “Ya no es necesario que haya subducción para explicar las señales geoquímicas más antiguas del planeta. Eso cambia todo el relato de cómo comenzó la actividad tectónica”.

Más allá de la Tierra, este estudio podría tener implicaciones para la astrobiología y la exploración planetaria. Si otros planetas rocosos también generaron cortezas con firmas similares desde etapas tempranas, los científicos podrían reevaluar qué condiciones permiten el desarrollo de ambientes habitables en el universo.

Continúa informándote

Cómo Marte influye en los ciclos orbitales que marcan el clima de la Tierra
Ciencia

Cómo Marte influye en los ciclos orbitales que marcan el clima de la Tierra

Los ciclos orbitales que marcan el clima de la Tierra dependen también de Marte cuya masa influye en la duración e intensidad de los ritmos climáticos

Cómo respondió la Antártida a un clima más cálido en el pasado
Ciencia

Cómo respondió la Antártida a un clima más cálido en el pasado

Registros geológicos muestran cómo la Antártida perdió hielo en un clima más cálido mediante la acción combinada del océano y la atmósfera con efectos globales

Fósiles de Marruecos muestran un linaje africano cercano al Homo sapiens
Ciencia

Fósiles de Marruecos muestran un linaje africano cercano al Homo sapiens

Fósiles hallados en Marruecos revelan poblaciones humanas africanas muy antiguas cercanas al origen del linaje que daría lugar al Homo sapiens

Procesos en el subsuelo marino explican concentraciones altas de hidrógeno hidrotermal
Ciencia

Procesos en el subsuelo marino explican concentraciones altas de hidrógeno hidrotermal

Nuevos datos del fondo oceánico indican que procesos bajo alta presión en el subsuelo marino pueden explicar concentraciones elevadas de hidrógeno hidrotermal

Por qué algunos hallazgos científicos tardan años en confirmarse
Ciencia

Por qué algunos hallazgos científicos tardan años en confirmarse

La confirmación de un hallazgo puede llevar años porque exige repeticiones controles revisión crítica y datos suficientes para separar una señal real de un fallo

Groenlandia perdió por completo el hielo en Prudhoe Dome hace 7.000 años
Ciencia

Groenlandia perdió por completo el hielo en Prudhoe Dome hace 7.000 años

Muestras bajo el hielo revelan que Prudhoe Dome en Groenlandia quedó libre de hielo hace unos 7.000 años mostrando una alta sensibilidad del manto glaciar a cambios de temperatura