Logotipo de Iceebook Iceebook - Noticias de Ciencia, Tecnología, Economía y más

Un estudio reescribe la historia geológica de la Tierra y adelanta la formación de la corteza continental

Científicos liderados por la Universidad Macquarie han revelado que las rocas continentales modernas conservan huellas químicas de hace más de 4.500 millones de años. El hallazgo desafía la cronología tradicional sobre el inicio de la tectónica de placas y sugiere que la corteza primitiva ya tenía la misma huella que los continentes actuales.

Autor - Aldo Venuta Rodríguez

3 min lectura

Muestra de roca que conserva huellas químicas de la protocorteza terrestre.
Pistas en una muestra de roca moderna revelan una firma química que se remonta a los inicios de la Tierra. (Créditos: Morris McLennan, Universidad Macquarie).

El análisis, dirigido por el profesor Simon Turner de la Universidad Macquarie, plantea que la corteza terrestre primitiva, formada hace unos 4.500 millones de años, ya poseía una firma química semejante a la de los continentes actuales. Esta conclusión desafía la visión dominante de que dicha composición solo pudo surgir mediante la subducción de placas tectónicas, un proceso asociado a etapas más tardías de la evolución geológica.

Los investigadores desarrollaron modelos geoquímicos que simulan la Tierra durante el eón Hádico, una época en la que el planeta estaba cubierto por un océano de magma. Según esos cálculos, la corteza original —conocida como protocorteza— podría haber desarrollado de forma natural ciertas huellas químicas sin necesidad de procesos tectónicos complejos.

Uno de los elementos clave del estudio es el niobio, un metal que normalmente se hunde hacia el núcleo bajo condiciones reductoras. Los modelos sugieren que este comportamiento explica por qué las rocas continentales modernas presentan una baja concentración de niobio, una característica que hasta ahora se consideraba exclusiva de zonas de subducción.

“Nos dimos cuenta de que las señales geoquímicas que estamos observando no necesitan de tectónica de placas para explicarse. Aparecen por sí solas en los primeros episodios de formación del núcleo terrestre”, explicó Turner, quien colaboró con investigadores de seis universidades de Australia, Reino Unido y Francia.

Publicidad

Hasta ahora, los científicos habían buscado la primera aparición de esa firma de niobio como indicador del inicio de la tectónica de placas. Sin embargo, los resultados de diversos estudios eran inconsistentes, lo que llevó al equipo a replantearse la pregunta de origen. Este nuevo enfoque ha permitido reconciliar décadas de datos geológicos.

El hallazgo también contribuye a explicar por qué todas las rocas continentales, sin importar su antigüedad, presentan firmas químicas similares. La clave estaría en que esas características se fijaron muy temprano, cuando el núcleo de hierro del planeta estaba todavía en formación y la superficie sufría un intenso bombardeo de meteoritos.

Según Turner, ese escenario habría fragmentado la protocorteza en múltiples trozos. Algunos se habrían engrosado y enriquecido con sílice, formando los primeros núcleos continentales. Otros fragmentos, desplazados lateralmente por fuerzas internas, habrían generado nueva corteza oceánica en los espacios intermedios.

Este modelo sugiere que la tectónica de placas pudo haber funcionado de manera intermitente y desorganizada hasta hace unos 3.800 millones de años, cuando la disminución del bombardeo meteórico permitió el establecimiento de un sistema más estable y autosostenido, como el que rige la dinámica terrestre actual.

Publicidad

“Estamos replanteando desde cero la forma en que se formaron los continentes”, comentó Turner. “Ya no es necesario que haya subducción para explicar las señales geoquímicas más antiguas del planeta. Eso cambia todo el relato de cómo comenzó la actividad tectónica”.

Más allá de la Tierra, este estudio podría tener implicaciones para la astrobiología y la exploración planetaria. Si otros planetas rocosos también generaron cortezas con firmas similares desde etapas tempranas, los científicos podrían reevaluar qué condiciones permiten el desarrollo de ambientes habitables en el universo.

Continúa informándote

Océano primitivo oscuro con un resplandor azulado y partículas que simbolizan la entrada temprana de oxígeno
Ciencia

Así empezó la entrada de oxígeno en los océanos hace más de 2.300 millones de años

Nuevas evidencias revelan cómo comenzó la entrada de oxígeno en los océanos hace más de 2.300 millones de años, un cambio que transformó la historia de la Tierra

Persona joven en la cama de noche mirando el teléfono con el rostro iluminado y expresión de cansancio
Ciencia

Nuevos datos muestran que la falta de sueño es el factor que más reduce la esperanza de vida, por encima de la dieta y la actividad física

Nuevos datos revelan que dormir menos de siete horas es el factor que más reduce la esperanza de vida, incluso por encima de la dieta y el ejercicio

Hormiga Atta retirando fragmentos del jardín de hongos de su colonia
Ciencia

Así evolucionó Escovopsis, el hongo que vive dentro de las colonias de hormigas desde hace 38 millones de años

Un estudio reconstruye cómo Escovopsis evolucionó junto a las hormigas agricultoras durante millones de años, revelando cambios en su forma, distribución y adaptación dentro de las colonias

Incendio forestal activo cerca del lago Okanagan con columnas de humo elevándose sobre el paisaje
Ciencia

Modelos de IA muestran que los incendios forestales son más caóticos de lo que se creía

Un estudio de UBC Okanagan demuestra con visión computacional que los incendios forestales se propagan con más variabilidad y aleatoriedad de la que asumen los modelos tradicionales

Campamento de globos de la NASA en la plataforma de hielo Ross, cerca de la estación McMurdo en la Antártida
Ciencia

La NASA prepara dos lanzamientos de globos científicos desde la Antártida para estudiar fenómenos extremos del universo

La NASA realizará dos lanzamientos de globos de gran altitud desde la Antártida para investigar neutrinos de ultraalta energía y posibles señales de materia oscura

Vampiroteuthis infernalis realista iluminado por bioluminiscencia en aguas profundas
Ciencia

El genoma del calamar vampiro ilumina cómo se separaron pulpos, calamares y sepias hace 300 millones de años

Un nuevo análisis revela que el calamar vampiro conserva rasgos genéticos ancestrales que ayudan a entender la separación evolutiva de pulpos, calamares y sepias