Un estudio reescribe la historia geológica de la Tierra y adelanta la formación de la corteza continental
Científicos liderados por la Universidad Macquarie han revelado que las rocas continentales modernas conservan huellas químicas de hace más de 4.500 millones de años. El hallazgo desafía la cronología tradicional sobre el inicio de la tectónica de placas y sugiere que la corteza primitiva ya tenía la misma huella que los continentes actuales.
Autor - Aldo Venuta Rodríguez
3 min lectura
El análisis, dirigido por el profesor Simon Turner de la Universidad Macquarie, plantea que la corteza terrestre primitiva, formada hace unos 4.500 millones de años, ya poseía una firma química semejante a la de los continentes actuales. Esta conclusión desafía la visión dominante de que dicha composición solo pudo surgir mediante la subducción de placas tectónicas, un proceso asociado a etapas más tardías de la evolución geológica.
Los investigadores desarrollaron modelos geoquímicos que simulan la Tierra durante el eón Hádico, una época en la que el planeta estaba cubierto por un océano de magma. Según esos cálculos, la corteza original —conocida como protocorteza— podría haber desarrollado de forma natural ciertas huellas químicas sin necesidad de procesos tectónicos complejos.
Uno de los elementos clave del estudio es el niobio, un metal que normalmente se hunde hacia el núcleo bajo condiciones reductoras. Los modelos sugieren que este comportamiento explica por qué las rocas continentales modernas presentan una baja concentración de niobio, una característica que hasta ahora se consideraba exclusiva de zonas de subducción.
“Nos dimos cuenta de que las señales geoquímicas que estamos observando no necesitan de tectónica de placas para explicarse. Aparecen por sí solas en los primeros episodios de formación del núcleo terrestre”, explicó Turner, quien colaboró con investigadores de seis universidades de Australia, Reino Unido y Francia.
Hasta ahora, los científicos habían buscado la primera aparición de esa firma de niobio como indicador del inicio de la tectónica de placas. Sin embargo, los resultados de diversos estudios eran inconsistentes, lo que llevó al equipo a replantearse la pregunta de origen. Este nuevo enfoque ha permitido reconciliar décadas de datos geológicos.
El hallazgo también contribuye a explicar por qué todas las rocas continentales, sin importar su antigüedad, presentan firmas químicas similares. La clave estaría en que esas características se fijaron muy temprano, cuando el núcleo de hierro del planeta estaba todavía en formación y la superficie sufría un intenso bombardeo de meteoritos.
Según Turner, ese escenario habría fragmentado la protocorteza en múltiples trozos. Algunos se habrían engrosado y enriquecido con sílice, formando los primeros núcleos continentales. Otros fragmentos, desplazados lateralmente por fuerzas internas, habrían generado nueva corteza oceánica en los espacios intermedios.
Este modelo sugiere que la tectónica de placas pudo haber funcionado de manera intermitente y desorganizada hasta hace unos 3.800 millones de años, cuando la disminución del bombardeo meteórico permitió el establecimiento de un sistema más estable y autosostenido, como el que rige la dinámica terrestre actual.
“Estamos replanteando desde cero la forma en que se formaron los continentes”, comentó Turner. “Ya no es necesario que haya subducción para explicar las señales geoquímicas más antiguas del planeta. Eso cambia todo el relato de cómo comenzó la actividad tectónica”.
Más allá de la Tierra, este estudio podría tener implicaciones para la astrobiología y la exploración planetaria. Si otros planetas rocosos también generaron cortezas con firmas similares desde etapas tempranas, los científicos podrían reevaluar qué condiciones permiten el desarrollo de ambientes habitables en el universo.
Continúa informándote
El cambio climático y los incendios forestales están revirtiendo el papel de los bosques en el ciclo del carbono
El aumento de incendios forestales y temperaturas convierte a los bosques en fuentes de carbono y pone en jaque su papel como sumideros naturales
Estados Unidos no disminuye el uso de combustibles fósiles a pesar del impulso de las energías renovables
A pesar del avance de las energías renovables, la producción de combustibles fósiles en Estados Unidos no muestra señales claras de descenso
La presión humana y el cambio de hábitat llevaron a la extinción de los grandes perezosos
A lo largo de millones de años, los perezosos evolucionaron en formas diversas, pero la presión humana y el cambio de hábitat causaron su extinción
Viviendas en el sureste de EE.UU. en riesgo: las pérdidas por huracanes podrían aumentar hasta un 76%
Se prevé que las pérdidas por huracanes en viviendas del sureste de EE.UU. aumenten un 76% para 2060 debido a vientos y lluvias más intensos
Descargas de aguas pluviales y residuales modifican la vida microscópica en ríos urbanos
Descargas de aguas pluviales y residuales alteran comunidades de zooplancton en ríos urbanos, con impactos ecológicos y riesgos para la biodiversidad acuática
Oscilaciones climáticas alteran la penetración de luz solar en las aguas de Tahoe
La radiación ultravioleta en el lago Tahoe varía drásticamente según los ciclos de lluvias y sequías, transformando su ecosistema subacuático