Una innovadora aleación de cobre supera los límites de resistencia térmica

Una nueva aleación de cobre desarrollada por científicos estadounidenses ha demostrado un rendimiento sin precedentes a altas temperaturas, abriendo nuevas posibilidades para aplicaciones en sectores como la defensa, la energía y la industria aeroespacial.

Autor - Aldo Venuta Rodríguez

3 min lectura

Estructura nanocristalina de la aleación Cu-3Ta-0.5Li mostrando átomos de Cu, Ta y Li.
Representación atómica de la aleación Cu-3Ta-0.5Li: en naranja, átomos de cobre; en amarillo, átomos de tántalo; en azul, átomos de litio. (Créditos: Universidad Estatal de Arizona)

El equipo, conformado por investigadores de la Universidad Estatal de Arizona, el Laboratorio de Investigación del Ejército de Estados Unidos (ARL), la Universidad de Lehigh y la Universidad Estatal de Luisiana, presentó una innovadora aleación de composición Cu-3Ta-0,5Li en masa, que destaca por su estabilidad térmica y resistencia mecánica incluso en condiciones extremas.

Los resultados del estudio, publicados en la revista Science, muestran que esta aleación nanocristalina puede soportar temperaturas cercanas a su punto de fusión sin perder sus propiedades estructurales. La clave de su comportamiento excepcional reside en una microestructura única compuesta por precipitados cúbicos de cobre-litio, rodeados por una bicapa atómica rica en tántalo.

“Este diseño de aleación se inspira en los mecanismos que hacen resistentes a las superaleaciones a base de níquel, pero aplicados al cobre”, explicó Kiran Solanki, profesor en la Escuela Ira A. Fulton de Ingeniería en la Universidad Estatal de Arizona y coautor del estudio. El material resultante supera ampliamente el rendimiento de las aleaciones de cobre comerciales disponibles hasta la fecha.

Uno de los aspectos más destacados es su resistencia a la fluencia, es decir, su capacidad para resistir la deformación bajo carga constante y altas temperaturas. Según los datos del estudio, la aleación Cu-3Ta-0,5Li mantiene su estabilidad a 800 °C durante más de 10 000 horas, con una pérdida mínima en el límite elástico, que alcanza los 1120 MPa a temperatura ambiente.

Publicidad

La adición de solo un 0,5 % de litio es clave para estabilizar la estructura interna del material. Este pequeño ajuste transforma los precipitados esféricos habituales en estructuras cúbicas más resistentes al calor y al estrés mecánico, lo que refuerza significativamente el rendimiento de la aleación sin comprometer su ductilidad.

“Lo que buscamos es crear materiales que mantengan su integridad en entornos extremos, como el interior de una turbina o durante el lanzamiento de un cohete”, añadió Solanki. “Al manipular las huellas estructurales del material a nivel atómico, podemos evitar los fallos que tradicionalmente limitan la vida útil de los componentes”.

La aleación está pensada para ser utilizada en componentes donde el calor, la presión y la exigencia mecánica son constantes. Entre sus posibles aplicaciones destacan los intercambiadores de calor, componentes eléctricos de alto rendimiento, armamento, turbinas de gas y sistemas de propulsión en aeronaves o naves espaciales.

Kris Darling, investigador del ARL y coautor del estudio, subrayó que esta investigación podría cambiar la forma en que se diseñan las aleaciones de próxima generación. “La nanoestructuración controlada de aleaciones puede convertirse en la base para crear materiales capaces de resistir condiciones que hoy se consideran límites operativos”.

Publicidad

El proyecto ha sido financiado por el Laboratorio de Investigación del Ejército de EE. UU., la Fundación Nacional de Ciencias (NSF) y la Iniciativa de Interfaces Nano-Humanas de la Universidad de Lehigh. El artículo completo se titula "A high-temperature Cu-Ta-Li nanostructured alloy with complexity-stabilized precipitates" y está disponible en la edición más reciente de Science.

Preguntas frecuentes

¿Qué es la aleación Cu-Ta-Li y por qué es relevante?

Es una nueva aleación nanocristalina de cobre, tántalo y litio, desarrollada para resistir altas temperaturas y deformaciones, ideal para entornos extremos.

¿Cuál es la principal innovación de esta aleación?

Su estructura interna con precipitados cúbicos estables que mantienen la resistencia mecánica a temperaturas de hasta 800 °C durante más de 10 000 horas.

¿En qué sectores se puede aplicar esta superaleación?

Defensa, aeroespacial, energía y electrónica de alto rendimiento, donde se requieren materiales duraderos y resistentes al calor.

¿Qué organismos participaron en la investigación?

Universidad Estatal de Arizona, ARL (EE. UU.), Universidad de Lehigh y Universidad Estatal de Luisiana, con financiación pública y militar.

Continúa informándote

Pierna bien conservada del mamut Yuka que permitió recuperar moléculas de ARN antiguas
Ciencia

Científicos secuencian el ARN más antiguo conocido a partir de un mamut lanudo

Los investigadores lograron secuenciar el ARN más antiguo conocido de un mamut lanudo conservado en el permafrost, revelando nuevos datos sobre su biología y estado celular

Reconstrucción ilustrada de Tainrakuasuchus bellator, un reptil acorazado precursor de los cocodrilos
Ciencia

Tainrakuasuchus bellator: el depredador acorazado que antecedió a los dinosaurios

Paleontólogos brasileños descubren a Tainrakuasuchus bellator, un reptil carnívoro acorazado que vivió hace 240 millones de años y revela la conexión entre Sudamérica y África antes de los dinosaurios

Vista aérea del cráter Jinlin tomada con dron, con marcas del borde y un recuadro mostrando el fondo con fragmentos de granito y una regla amarilla de 20 centímetros
Ciencia

Un gigantesco cráter descubierto en China revela el mayor impacto terrestre de los últimos 10.000 años

Científicos en China descubrieron el cráter Jinlin, de 900 metros de ancho, el mayor impacto terrestre conocido del Holoceno y una pieza clave para entender la historia reciente de la Tierra

Ilustración geológica que muestra un corte transversal de la Tierra, con fragmentos continentales hundiéndose en el manto y alimentando volcanes submarinos bajo el océano
Ciencia

Los continentes se desprenden desde abajo y alimentan volcanes ocultos en los océanos

Investigadores de la Universidad de Southampton descubren que los continentes se erosionan desde las profundidades y liberan material que alimenta volcanes submarinos en los océanos

Excavaciones en los pozos de brea de La Brea con restos de árboles antiguos utilizados en el estudio
Ciencia

Los árboles de la Edad de Hielo ayudaron a estabilizar el clima liberando CO₂ a la atmósfera terrestre

Un estudio de Penn State revela que los árboles del último período glacial liberaban CO₂, ayudando a mantener estable el clima de la Tierra

Neurona inhibitoria extendida en el colículo superior junto a terminaciones retinianas y otras neuronas
Ciencia

El cerebro ya procesaba la atención visual hace más de 500 millones de años

Un estudio revela que el colículo superior, una estructura cerebral ancestral, ya realizaba cálculos visuales hace más de 500 millones de años, antes de la evolución de la corteza cerebral