Una innovadora aleación de cobre supera los límites de resistencia térmica

Una nueva aleación de cobre desarrollada por científicos estadounidenses ha demostrado un rendimiento sin precedentes a altas temperaturas, abriendo nuevas posibilidades para aplicaciones en sectores como la defensa, la energía y la industria aeroespacial.

Autor - Aldo Venuta Rodríguez

3 min lectura

Estructura nanocristalina de la aleación Cu-3Ta-0.5Li mostrando átomos de Cu, Ta y Li.
Representación atómica de la aleación Cu-3Ta-0.5Li: en naranja, átomos de cobre; en amarillo, átomos de tántalo; en azul, átomos de litio. (Créditos: Universidad Estatal de Arizona)

El equipo, conformado por investigadores de la Universidad Estatal de Arizona, el Laboratorio de Investigación del Ejército de Estados Unidos (ARL), la Universidad de Lehigh y la Universidad Estatal de Luisiana, presentó una innovadora aleación de composición Cu-3Ta-0,5Li en masa, que destaca por su estabilidad térmica y resistencia mecánica incluso en condiciones extremas.

Los resultados del estudio, publicados en la revista Science, muestran que esta aleación nanocristalina puede soportar temperaturas cercanas a su punto de fusión sin perder sus propiedades estructurales. La clave de su comportamiento excepcional reside en una microestructura única compuesta por precipitados cúbicos de cobre-litio, rodeados por una bicapa atómica rica en tántalo.

“Este diseño de aleación se inspira en los mecanismos que hacen resistentes a las superaleaciones a base de níquel, pero aplicados al cobre”, explicó Kiran Solanki, profesor en la Escuela Ira A. Fulton de Ingeniería en la Universidad Estatal de Arizona y coautor del estudio. El material resultante supera ampliamente el rendimiento de las aleaciones de cobre comerciales disponibles hasta la fecha.

Uno de los aspectos más destacados es su resistencia a la fluencia, es decir, su capacidad para resistir la deformación bajo carga constante y altas temperaturas. Según los datos del estudio, la aleación Cu-3Ta-0,5Li mantiene su estabilidad a 800 °C durante más de 10 000 horas, con una pérdida mínima en el límite elástico, que alcanza los 1120 MPa a temperatura ambiente.

Publicidad

La adición de solo un 0,5 % de litio es clave para estabilizar la estructura interna del material. Este pequeño ajuste transforma los precipitados esféricos habituales en estructuras cúbicas más resistentes al calor y al estrés mecánico, lo que refuerza significativamente el rendimiento de la aleación sin comprometer su ductilidad.

“Lo que buscamos es crear materiales que mantengan su integridad en entornos extremos, como el interior de una turbina o durante el lanzamiento de un cohete”, añadió Solanki. “Al manipular las huellas estructurales del material a nivel atómico, podemos evitar los fallos que tradicionalmente limitan la vida útil de los componentes”.

La aleación está pensada para ser utilizada en componentes donde el calor, la presión y la exigencia mecánica son constantes. Entre sus posibles aplicaciones destacan los intercambiadores de calor, componentes eléctricos de alto rendimiento, armamento, turbinas de gas y sistemas de propulsión en aeronaves o naves espaciales.

Kris Darling, investigador del ARL y coautor del estudio, subrayó que esta investigación podría cambiar la forma en que se diseñan las aleaciones de próxima generación. “La nanoestructuración controlada de aleaciones puede convertirse en la base para crear materiales capaces de resistir condiciones que hoy se consideran límites operativos”.

Publicidad

El proyecto ha sido financiado por el Laboratorio de Investigación del Ejército de EE. UU., la Fundación Nacional de Ciencias (NSF) y la Iniciativa de Interfaces Nano-Humanas de la Universidad de Lehigh. El artículo completo se titula "A high-temperature Cu-Ta-Li nanostructured alloy with complexity-stabilized precipitates" y está disponible en la edición más reciente de Science.

Continúa informándote

Lago de K'gari con aguas claras y nivel reducido, conectado a un sistema subterráneo más profundo
Ciencia

Evidencias muestran que los grandes lagos de K’gari enfrentaron una sequía severa entre 7.600 y 5.600 años atrás

Un estudio revela que varios lagos profundos de K’gari se secaron entre 7.600 y 5.600 años atrás, mostrando una sequía extrema y obligando a replantear la historia climática del este de Australia

Descarga de sacos de grano desde barcos medievales junto a una ciudad portuaria
Ciencia

Erupciones volcánicas y hambruna pudieron desencadenar la llegada de la Peste Negra a la Europa medieval

Un estudio señala que erupciones volcánicas y una hambruna entre 1345 y 1347 forzaron cambios en el comercio de grano que habrían introducido la Peste Negra en Europa

Escena del Cretácico Superior con un Nanotyrannus enfrentándose a dos T. rex juveniles mientras un subadulto observa
Ciencia

Nuevo estudio confirma que Nanotyrannus no era un T. rex joven, sino una especie propia

Un análisis microscópico del hueso hioides demuestra que Nanotyrannus era un depredador adulto distinto del T rex, resolviendo décadas de debate sobre su identidad

Células primitivas flotando sobre respiraderos hidrotermales iluminados en un océano oscuro.
Ciencia

La vida compleja surgió mucho antes de lo que se pensaba, incluso en un planeta casi sin oxígeno

Un estudio muestra que las primeras células complejas aparecieron hace 2.900 millones de años, mucho antes del aumento de oxígeno y antes de la llegada de las mitocondrias

Chimpancé
Ciencia

Los humanos tenemos áreas cerebrales que responden de forma especial a las voces de los chimpancés

Un estudio de la Universidad de Ginebra revela que partes del cerebro humano reaccionan de forma específica a las vocalizaciones de los chimpancés, lo que aporta pistas sobre el origen del reconocimiento de voz y la evolución del lenguaje

Bidón blanco de peróxido de hidrógeno con tapa amarilla y etiqueta azul
Ciencia

Descubren una forma más limpia de producir peróxido de hidrógeno usando solo luz solar, agua y aire

Un nuevo método desarrollado por Cornell permite generar peróxido de hidrógeno usando solo luz solar, agua y aire, una alternativa más limpia y segura al proceso químico tradicional