Resuelto un misterio de 30 años: los agujeros negros vibran con disonancia por un fenómeno cuántico inesperado

Un nuevo estudio revela que la disonancia en los “zumbidos” de los agujeros negros es causada por resonancias entre modos vibratorios

Autor - Aldo Venuta Rodríguez

3 min lectura

Representación digital de un agujero negro distorsionando el espacio-tiempo con anillos concéntricos de ondas gravitacionales.
Visualización artística de un agujero negro giratorio que deforma el tejido del espacio-tiempo a su alrededor, generando ondas gravitacionales. (Créditos: Iceebook)

Durante tres décadas, los físicos se han preguntado por qué algunos “zumbidos” de los agujeros negros no seguían las reglas. Estas vibraciones, registradas en forma de ondas gravitacionales tras fusiones cósmicas, mostraban una anomalía que ningún cálculo lograba explicar con precisión. Ahora, una nueva investigación liderada por el Dr. Hayato Motohashi, de la Universidad Metropolitana de Tokio, finalmente ha resuelto este enigma.

El hallazgo se basa en una innovadora combinación de simulaciones computacionales de altísima precisión y una rama emergente de la física conocida como teoría no hermítica. La clave está en comprender cómo los agujeros negros vibran al estilo de una campana cósmica: a través de distintos "modos", o patrones vibratorios, denominados modos cuasinormales (QNM). Y cuando dos de estos modos interactúan de forma resonante, ocurre una disonancia sorprendente.

Lejos de ser un simple error de cálculo, como se pensó en 1997 cuando el fenómeno fue detectado por primera vez, la disonancia responde a una propiedad profunda del espacio-tiempo: en ciertas condiciones, dos modos vibratorios se entrelazan en una resonancia que distorsiona el comportamiento esperado. Este efecto es universal y aparece en múltiples combinaciones de modos, no en un solo caso.

Este descubrimiento no solo explica el viejo misterio, sino que inaugura un nuevo paradigma: la física gravitacional no hermítica, que permite estudiar los agujeros negros bajo una óptica completamente distinta. Este marco teórico ya ha demostrado ser útil en óptica y física cuántica, y ahora se abre paso en la astrofísica extrema.

Publicidad

El equipo de Motohashi identificó que estos patrones de resonancia surgen cerca de un “punto excepcional” (EP), una singularidad matemática donde los valores propios de los modos se repelen, evitando cruzarse. Este fenómeno se conoce como “cruce evitado” y genera un tipo de amplificación peculiar en las frecuencias de los modos, algo análogo a una nota musical que se desentona al tocar dos cuerdas juntas.

El estudio también revela que las trayectorias de estos modos en el plano complejo no son aleatorias: en muchos casos, siguen curvas matemáticas como hipérbolas o lemniscatas, lo que apunta a una profunda regularidad estructural detrás del aparente caos gravitacional.

Más aún, estos comportamientos no se limitan a los agujeros negros rotatorios (Kerr), sino que también se observan en objetos no giratorios y en otros tipos de perturbaciones, como las ondas electromagnéticas o escalares. La resonancia de los modos QNM podría ser, por tanto, una firma universal en la naturaleza de la gravedad.

Este avance tiene implicaciones enormes para la espectroscopía de agujeros negros, una disciplina que busca descifrar las propiedades internas de estos objetos a partir de las ondas gravitacionales que emiten. Comprender las resonancias permitirá distinguir entre agujeros negros "normales" y aquellos que podrían esconder nueva física más allá de la relatividad general.

Publicidad

Referencias:Physical Review Letters

Continúa informándote

Cometa 3I/ATLAS visible como un punto tenue en imágenes captadas por la misión SOHO en octubre de 2025
Espacio

Nuevo informe de la NASA detalla qué es realmente el cometa interestelar 3I/ATLAS

La NASA revela sus primeras conclusiones sobre el cometa interestelar 3I/ATLAS tras coordinar más de 20 misiones. El objeto es natural y muestra señales químicas de un sistema estelar más antiguo

Objeto rocoso similar a un cometa o asteroide pasando cerca de Júpiter
Espacio

Nueva coincidencia entre la cometa 3I/ATLAS y Júpiter: los datos contradicen la hipótesis extraterrestre

Una aparente coincidencia entre la cometa interstelar 3I/ATLAS y el rayo de Hill de Júpiter reaviva teorías de Avi Loeb, pero los datos disponibles muestran que no hay evidencia de maniobras artificiales

La Nebulosa de la Araña Roja captada por el telescopio espacial James Webb con estructuras en rojo, púrpura y azul
Espacio

Webb revela la estructura completa de la Nebulosa de la Araña Roja por primera vez

Una nueva imagen de NIRCam muestra por primera vez la extensión total de los lóbulos que forman las “patas” de la Nebulosa de la Araña Roja, estructuras infladas por gas que se expanden a lo largo de miles de años

Lanzamiento nocturno de un cohete Soyuz hacia la Estación Espacial Internacional desde Baikonur
Espacio

Chris Williams y su tripulación atracan con éxito en la Estación Espacial Internacional

El astronauta de la NASA Chris Williams llegó este jueves a la Estación Espacial Internacional (EEI) junto a los cosmonautas Sergey Kud-Sverchkov y Sergei Mikaev, tras un vuelo de solo tres horas a bordo de la nave Soyuz MS-28.

Selfi del rover Perseverance en el cráter Jezero con un pequeño remolino de polvo visible en la distancia
Espacio

Descubren descargas eléctricas en la atmósfera marciana gracias al rover Perseverance

Un nuevo estudio revela que el rover Perseverance detectó “mini-rayos” en Marte, pequeñas descargas eléctricas asociadas a remolinos de polvo que confirman actividad eléctrica en la atmósfera marciana

Mapa de intensidad de rayos gamma centrado en el halo galáctico, con la franja del plano galáctico excluida
Espacio

Casi un siglo después, detectan señales que podrían ser la primera evidencia directa de materia oscura

Un análisis del telescopio Fermi identifica un patrón de rayos gamma compatible con la aniquilación de materia oscura, un posible avance tras casi 100 años de búsqueda científica