Científicos descubren agujeros negros que giran más rápido de lo esperado
Un nuevo estudio del Sloan Digital Sky Survey (SDSS) ha revelado que algunos agujeros negros supermasivos giran a velocidades inesperadamente altas. Esta investigación sugiere que el crecimiento de estos objetos cósmicos no solo ocurre por fusiones de galaxias, sino también por la acumulación gradual de gas y polvo. Este descubrimiento podría cambiar la comprensión actual sobre la evolución de los agujeros negros en el universo.
Autor - Aldo Venuta Rodríguez
3 min lectura
Los agujeros negros supermasivos, con masas que pueden alcanzar miles de millones de veces la del Sol, han sido tradicionalmente estudiados bajo la hipótesis de que su crecimiento se debe a la fusión de galaxias. Sin embargo, la nueva evidencia indica que el gas y el polvo circundante también juegan un papel clave en la aceleración de su rotación.
"Hemos estudiado agujeros negros en galaxias desde la actualidad hasta hace siete mil millones de años", explica Logan Fries, investigador de la Universidad de Connecticut. "Descubrimos que giran demasiado rápido como para haberse formado solo por fusiones galácticas. Deben haberse desarrollado en gran parte a partir de la acumulación de material en su interior, lo que los hizo crecer y rotar a mayor velocidad".
El desafío de medir la velocidad de giro de un agujero negro
Determinar la velocidad de giro de un agujero negro no es una tarea sencilla. Su rotación es difícil de distinguir de la del disco de acreción, una nube de gas y polvo que gira alrededor de él. Según Jonathan Trump, investigador del SDSS, la clave está en analizar la región más interna del disco de acreción, donde el material cae directamente en el horizonte de sucesos del agujero negro. "Un agujero negro en rotación arrastra este material interno en su viaje, lo que genera diferencias observables en nuestras mediciones", explica Trump.
El equipo utilizó datos del proyecto Reverberation Mapping del SDSS, que ha realizado mediciones detalladas de cientos de agujeros negros a través de la observación de la luz emitida por sus discos de acreción. Pequeñas variaciones en la longitud de onda de la luz permiten inferir la velocidad de giro del agujero negro.
El "registro fósil" de los agujeros negros
Este método de análisis ha sido denominado por los investigadores como "arqueología de agujeros negros", ya que permite estudiar la historia de su crecimiento a lo largo del tiempo. Según Fries, "al observar la rotación de un agujero negro, estamos viendo esencialmente su registro fósil, la huella de cómo ha acumulado masa a lo largo de miles de millones de años".
En la actualidad, el modelo predominante establece que los agujeros negros supermasivos crecen principalmente a través de fusiones de galaxias. Dado que estas fusiones ocurren con orientaciones aleatorias, se esperaba que las rotaciones de los agujeros negros fueran bajas o canceladas en gran medida. Sin embargo, los nuevos hallazgos contradicen esta idea: muchos agujeros negros giran a velocidades extremadamente altas, lo que sugiere que la acumulación gradual de gas y polvo también juega un papel crucial en su evolución.
Implicaciones y futuras investigaciones
Este descubrimiento plantea nuevas preguntas sobre la formación de los agujeros negros y su impacto en la evolución de las galaxias. Si los agujeros negros pueden girar a gran velocidad gracias a la acumulación de material, entonces su crecimiento podría ser más continuo y menos dependiente de eventos violentos como las fusiones galácticas.
Los investigadores planean continuar sus estudios utilizando observaciones del Telescopio Espacial James Webb (JWST), que ha permitido detectar agujeros negros en etapas cada vez más tempranas del universo. "Los agujeros negros representan uno de los mayores desafíos para nuestra comprensión del cosmos", afirma Juna Kollmeier, director del SDSS-V. "Estos estudios nos ayudarán a construir una imagen más clara de su evolución y a poner a prueba nuestros modelos teóricos".
Continúa informándote
Así se forma el deslumbrante brillo que rodea a los agujeros negros, según nuevas simulaciones
Nuevas simulaciones recrean cómo el material que cae en los agujeros negros produce un brillo extremo, revelando detalles clave sobre su dinámica y su emisión de luz
La basura espacial amenaza las misiones del futuro, pero nuevas propuestas muestran cómo podría limpiarse la órbita terrestre
La basura espacial crece sin control y amenaza satélites y misiones, pero un nuevo estudio propone modelos económicos y técnicas para hacer viable la limpieza de la órbita terrestre
Desarrollan en Leicester el primer sistema robótico británico para soldar en el espacio
El Reino Unido desarrolla ISPARK, el primer sistema robótico capaz de soldar en el espacio, una tecnología que permitirá reparar y fabricar estructuras orbitales de forma autónoma
Simulan por primera vez cómo se propaga el sonido en Marte usando datos del rover Perseverance
Una nueva simulación basada en datos del rover Perseverance revela cómo se propaga el sonido en Marte y ayuda a entender mejor su atmósfera y el terreno del cráter Jezero
Un nuevo análisis explica por qué Urano mostró un cinturón de radiación electrónica tan intenso durante el sobrevuelo de la Voyager 2
Un nuevo análisis revela que una fuerte perturbación del viento solar pudo intensificar el cinturón de radiación electrónica de Urano durante el paso de la Voyager 2, explicando su comportamiento inusual
Descubren azúcares importantes para la vida en las muestras del asteroide Bennu
Nuevos análisis revelan azúcares esenciales como ribosa y glucosa en muestras de Bennu, reforzando la idea de que los asteroides aportaron ingredientes clave para el origen de la vida