Cómo los sonidos de meteoroides pueden ayudar a rastrear la basura espacial que cae a la Tierra

Un nuevo estudio explora cómo los sonidos de meteoroides pueden ayudar a rastrear basura espacial y mejorar la defensa planetaria

Autor - Aldo Venuta Rodríguez

3 min lectura

Visualización de basura espacial rodeando la Tierra
Visualización digital de la acumulación de basura espacial en la órbita terrestre. Créditos: iceebook.com

Cada año, nuestro planeta gana unos cuantos miles de toneladas extra de masa: polvo espacial, meteoritos y basura artificial regresan del espacio y entran en la atmósfera terrestre. Si bien muchos de estos objetos se desintegran sin consecuencias, otros pueden representar riesgos considerables si impactan en zonas pobladas. Ahora, una científica propone una herramienta innovadora para rastrear estos peligros: el sonido.

Renderizado digital de satélites y restos orbitando la Tierra
Ilustración artística de satélites inactivos y fragmentos de basura espacial en órbita baja. Créditos: iceebook.com

Durante la Asamblea General de la Unión Europea de Geociencias (EGU 2025), la investigadora Elizabeth Silber, de los Laboratorios Nacionales Sandia, presentará un estudio que utiliza sensores de infrasonido para rastrear objetos espaciales que atraviesan el cielo. Su investigación se centra en los bólidos, grandes meteoroides que se desintegran con explosiones brillantes en la atmósfera, liberando ondas de choque detectables a miles de kilómetros.

El estudio aborda un problema clave: a diferencia de una explosión puntual, un bólido genera sonido a lo largo de toda su trayectoria. Este detalle es especialmente relevante para objetos que ingresan a la atmósfera en ángulos bajos, donde las señales de infrasonido pueden llegar desde distintas direcciones y confundir su ubicación real.

Ilustración digital de meteoroide ingresando a la atmósfera terrestre
Representación artística de un meteoroide entrando a la atmósfera terrestre desde el espacio. Créditos: iceebook.com

Para analizar este fenómeno, Silber empleó datos de la red mundial de sensores de infrasonido mantenida por la Organización del Tratado de Prohibición Completa de los Ensayos Nucleares (OTPCE), cuyo sistema registra desde explosiones nucleares hasta truenos. Usando señales puras de bólidos, la científica logró modelar cómo el ángulo de entrada afecta la detección: si es superior a 60 grados, el seguimiento es preciso; si es más horizontal, la incertidumbre aumenta considerablemente.

Publicidad

“El infrasonido de un bólido se parece más a un estampido sónico que se extiende por el cielo que a una sola explosión”, explicó Silber. “Esto cambia por completo cómo debemos interpretar los datos acústicos si queremos saber a dónde se dirige un objeto espacial”.

Imagen inspirada en la NASA de un meteoro captado desde la EEI
Ilustración basada en fotografía de la NASA que muestra un meteoro brillante observado desde la Estación Espacial Internacional. Créditos: iceebook.com

Esta investigación no solo es relevante para entender los meteoroides naturales, sino también para rastrear basura espacial: satélites obsoletos, restos de cohetes y herramientas perdidas que orbitan la Tierra y eventualmente caen sin control. Al no saber exactamente dónde impactarán, resulta difícil prever y mitigar sus consecuencias. Los datos de infrasonido, bien interpretados, podrían cambiar eso.

El trabajo será presentado el viernes 2 de mayo en el punto PICO 5 de la sesión SM8.5 en la EGU 2025, que se celebra de forma híbrida desde Viena. También se discutirá el potencial de esta técnica en la defensa planetaria, un campo que gana importancia a medida que aumentan los riesgos desde el espacio cercano a la Tierra.

Referencias: EGU25-9264, Unión Europea de Geociencias, 2025

Publicidad

Preguntas frecuentes

¿Por qué es importante rastrear la basura espacial?

Porque su caída descontrolada puede afectar zonas habitadas, dañar satélites o infraestructura, y poner en riesgo la seguridad pública.

¿Qué es un bólido?

Es un meteoro de gran tamaño y brillo que explota en la atmósfera, generando ondas de choque detectables por sensores infrasónicos.

¿Qué papel tiene el infrasonido en este estudio?

Detecta las ondas acústicas generadas por objetos en caída, permitiendo reconstruir su trayectoria incluso a gran distancia.

¿Qué organización lidera esta investigación?

La Unión Europea de Geociencias y los Laboratorios Nacionales Sandia, con sensores del sistema internacional de vigilancia (OTPCE).

Continúa informándote

Neurona inhibitoria extendida en el colículo superior junto a terminaciones retinianas y otras neuronas
Ciencia

El cerebro ya procesaba la atención visual hace más de 500 millones de años

Un estudio revela que el colículo superior, una estructura cerebral ancestral, ya realizaba cálculos visuales hace más de 500 millones de años, antes de la evolución de la corteza cerebral

Texto COP30 en el centro sobre un fondo azul degradado
Medio Ambiente

La COP30 inicia en Brasil con un llamado a reforzar la cooperación climática global

La COP30 comenzó en Belém, Brasil, con un llamado de líderes mundiales y de la ONU a acelerar la acción climática y combatir la desinformación sobre el cambio climático

Mano robótica metálica apoyada sobre una superficie de acero
Tecnología

Los grandes modelos de lenguaje pueden volver peligrosos a los robots

Un estudio del King’s College y Carnegie Mellon muestra que los modelos de lenguaje más usados pueden inducir a robots a realizar acciones peligrosas o discriminatorias en el mundo real

Aerogeneradores en un campo de trigo bajo un cielo despejado
Energía

Colombia da un paso firme en la transición energética con la nueva Licencia Ambiental Eólica

El Gobierno colombiano firma el decreto que crea la Licencia Ambiental Eólica, un instrumento que agiliza los proyectos de energía limpia y refuerza la protección ambiental y social

Galaxia Y1 observada por el telescopio James Webb con regiones de formación estelar resaltadas
Espacio

El telescopio ALMA revela una galaxia que forma estrellas 180 veces más rápido que la Vía Láctea

Astrónomos detectan una galaxia lejana que produce estrellas 180 veces más rápido que la Vía Láctea. Su calor extremo sugiere que en el universo primitivo las galaxias crecían a un ritmo vertiginoso