Un experimento con espejos logra anular el efecto de retroacción cuántica en nanopartículas

Investigadores descubren cómo eliminar la retroacción cuántica usando espejos, abriendo la puerta a nuevos avances en física fundamental y sensores ultrasensibles

Autor - Aldo Venuta Rodríguez

3 min lectura

Onda luminosa estacionaria reflejada en espejo curvo con partícula esférica y flujo binario de información
La imagen representa cómo una estructura cuántica puede emitir información procesada desde un sistema cerrado.

La física cuántica avanza un paso más hacia el control de lo invisible. Un nuevo experimento realizado por científicos de la Universidad de Swansea, en el Reino Unido, ha logrado anular el fenómeno de la retroacción cuántica, un efecto que hasta ahora complicaba enormemente las mediciones de objetos extremadamente pequeños como nanopartículas suspendidas.

Cuando se intenta medir la posición de partículas diminutas, el mismo proceso de observación las perturba. Esto ocurre porque los fotones, al interactuar con dichas partículas, las empujan involuntariamente, generando una alteración conocida como retroacción cuántica. Sin embargo, los investigadores James Bateman y Rafal Gajewski descubrieron un método óptico para evitar completamente ese efecto, sin necesidad de modificar las propiedades de la partícula ni utilizar técnicas invasivas.

El truco radica en el uso de un espejo semiesférico con la partícula colocada exactamente en su centro. En esta configuración, las propiedades ópticas del sistema hacen que la partícula se vuelva “indistinguible” de su propia imagen reflejada. Al no poder extraer información sobre su posición mediante la luz dispersa, el sistema “deja de ser observable” desde el punto de vista cuántico, lo que también elimina automáticamente la retroacción.

“En ese instante, medir se vuelve imposible y la perturbación desaparece”, explicaron los autores. Esta simetría impuesta por los límites reflectantes provoca que no se produzca transferencia neta de información, y por tanto, no haya interferencia en el estado cuántico de la partícula. La luz simplemente deja de alterar su posición, abriendo una nueva forma de interacción no destructiva en optomecánica cuántica.

Publicidad

El hallazgo no es solo una curiosidad teórica. Esta supresión de la retroacción cuántica tiene importantes implicaciones prácticas: permitiría manipular sistemas mucho más grandes que átomos sin perturbarlos, lo que es fundamental para explorar la frontera entre la mecánica cuántica y la gravedad, así como para construir sensores capaces de detectar fuerzas diminutas con una precisión inédita.

Entre las aplicaciones más prometedoras destaca la propuesta del proyecto MAQRO (Macroscopic Quantum Resonators), una futura misión espacial que busca comprobar la validez de las leyes cuánticas con objetos mesoscópicos, es decir, de un tamaño mucho mayor que cualquier sistema probado hasta ahora en física cuántica. El experimento de Swansea podría ser un componente clave para que dicha misión se convierta en realidad.

El estudio, titulado “Backaction suppression in levitated optomechanics using reflective boundaries”, ha sido publicado en la revista científica Physical Review Research. Su enfoque elegante y no invasivo ofrece un nuevo paradigma para el diseño de experimentos en los que observar ya no implique perturbar, y donde los límites ópticos se convierten en aliados para preservar la coherencia cuántica.

Publicidad

Continúa informándote

Rayo láser verde delgado atravesando un ambiente con ligera niebla
Ciencia

Cómo funciona de verdad un láser y por qué no se ve “el rayo” en el aire

Los láseres producen un tipo de luz extremadamente ordenada y concentrada, pero su rayo casi nunca se ve en el aire. Aquí te explicamos cómo funciona realmente un láser y por qué el haz visible es solo una ilusión del ambiente

Boca humana emitiendo ondas acústicas
Ciencia

Cómo los sonidos de las palabras influyen en lo atractivas y memorables que nos parecen

Un estudio revela que ciertos sonidos hacen que las palabras nos parezcan más atractivas y fáciles de recordar, mostrando cómo la fonética influye en la emoción y la memoria

Modelo tridimensional de la cantera de Rano Raraku generado a partir de miles de imágenes aéreas
Ciencia

Así es el nuevo modelo 3D que permite explorar las estatuas de la Isla de Pascua desde casa

Un modelo 3D de alta resolución de la cantera de Rano Raraku permite explorar desde casa el paisaje donde se tallaron los moáis y revela cómo trabajaban distintos talleres en la Isla de Pascua

Investigadores perforando un núcleo de sedimento en el lago Stoneman con equipo de muestreo
Ciencia

El suroeste de EE. UU. fue más polvoriento entre glaciaciones: un registro de 230.000 años lo demuestra

Un registro de 230.000 años del lago Stoneman revela que el suroeste de EE. UU. emitió más polvo entre glaciaciones que durante ellas, desafiando patrones globales

Muestra de agua contaminada con sedimentos y decoloración visible
Ciencia

Cómo un desecho minero tóxico podría convertirse en una herramienta clave para obtener agua potable

Un estudio demuestra que el drenaje ácido de minas puede transformarse en cloruro férrico para tratar agua potable, convirtiendo un riesgo ambiental en un recurso útil

Lago de K'gari con aguas claras y nivel reducido, conectado a un sistema subterráneo más profundo
Ciencia

Evidencias muestran que los grandes lagos de K’gari enfrentaron una sequía severa entre 7.600 y 5.600 años atrás

Un estudio revela que varios lagos profundos de K’gari se secaron entre 7.600 y 5.600 años atrás, mostrando una sequía extrema y obligando a replantear la historia climática del este de Australia