IXPE resuelve un misterio cósmico al descubrir que los electrones generan rayos X en chorros de agujeros negros
Un agujero negro supermasivo en BL Lacertae proporciona pistas clave sobre cómo se generan los rayos X en los chorros cósmicos
Autor - Aldo Venuta Rodríguez
4 min lectura
En una de las investigaciones más reveladoras de los últimos años, científicos de la NASA y colaboradores internacionales han resuelto una incógnita astronómica que ha desafiado a la comunidad científica durante décadas: ¿cómo se producen los rayos X en los chorros de partículas expulsados por agujeros negros supermasivos? El responsable de este hallazgo es el satélite IXPE (Explorador de Polarimetría de Rayos X de Imágenes), en conjunto con observaciones ópticas y de radio.
El objeto protagonista es el blazar BL Lacertae (BL Lac), un núcleo galáctico activo con un agujero negro supermasivo cuya orientación lanza uno de sus chorros directamente hacia la Tierra. A finales de noviembre de 2023, el IXPE lo observó durante siete días consecutivos, logrando detectar una firma inequívoca: la emisión de rayos X no proviene de protones, como se sospechaba, sino de electrones que interactúan con fotones mediante el efecto Compton.
El efecto Compton ocurre cuando un fotón de baja energía —como uno infrarrojo— colisiona con un electrón de alta velocidad, ganando energía y transformándose en un fotón de rayos X. En el entorno de BL Lac, los electrones se mueven a velocidades cercanas a la de la luz, lo que hace posible esta conversión energética. La evidencia definitiva vino de la medición de la polarización de la luz.
Si los rayos X fueran generados por protones, deberían mostrar una polarización elevada. Sin embargo, el IXPE determinó que la polarización máxima era del 7,6%, mientras que la luz óptica presentaba un pico sin precedentes del 47,5%. “Este no solo fue el BL Lac más polarizado de los últimos 30 años, ¡sino el blazar más polarizado jamás observado!”, explicó Ioannis Liodakis, astrofísico del Instituto de Astrofísica FORTH en Grecia.
“El hecho de que la polarización óptica fuera mucho mayor que en los rayos X solo puede explicarse por la dispersión Compton”, agregó Steven Ehlert, científico del proyecto IXPE en el Centro Marshall de Vuelos Espaciales. Esta diferencia en polarización resolvió el misterio: los electrones son los principales responsables de la generación de rayos X en estos chorros de materia acelerada.
El IXPE, lanzado el 9 de diciembre de 2021, es el único satélite capaz actualmente de realizar mediciones precisas de polarización en rayos X. Gracias a su tecnología, se ha podido confirmar una teoría y descartar otra, lo que marca un hito en la comprensión de los entornos extremos donde actúan los agujeros negros.
“IXPE ha logrado resolver otro misterio de los agujeros negros”, señaló Enrico Costa, astrofísico del Istituto di Astrofísica e Planetologia Spaziali y uno de los científicos que propusieron originalmente el experimento a la NASA hace una década. “La visión polarizada en rayos X de IXPE está revolucionando nuestro conocimiento sobre estos objetos extremos”.
¿Y ahora qué sigue? El equipo planea buscar más blazares en estados de alta polarización, para ampliar esta línea de investigación. “Los blazares cambian bastante con el tiempo y están llenos de sorpresas”, concluye Ehlert.
El IXPE es una misión conjunta de la NASA y la Agencia Espacial Italiana, con colaboración científica de 12 países. Está dirigida por el Centro Marshall para Vuelos Espaciales de la NASA en Alabama y cuenta con el soporte operativo de BAE Systems y la Universidad de Colorado en Boulder. Puedes conocer más sobre IXPE en el sitio oficial de la NASA.
Preguntas frecuentes
Que los rayos X no se generan por protones, sino por electrones que interactúan con fotones mediante el efecto Compton.
Es un fenómeno donde un fotón gana energía tras chocar con un electrón, transformándose en un fotón de mayor energía como un rayo X.
Porque es un blazar orientado hacia la Tierra que permitió medir directamente la polarización de la luz en distintos rangos y resolver el origen de los rayos X.
La polarización óptica fue del 47,5%, mientras que la de rayos X fue mucho menor (menos del 7,6%), lo que evidenció la dispersión Compton como el mecanismo responsable.
Continúa informándote
La IA logra su primera navegación autónoma en un robot dentro de la Estación Espacial Internacional
Por primera vez, un robot de la Estación Espacial Internacional logró moverse de forma autónoma gracias a un sistema de IA de Stanford, un avance que abre nuevas posibilidades para la robótica en órbita
Detectan un flujo ultrarrápido expulsado por el agujero negro de NGC 3783 tras una inesperada llamarada de rayos X
Un nuevo análisis con XRISM revela un flujo ultrarrápido expulsado por el agujero negro de NGC 3783 tras una llamarada de rayos X que aceleró el material
Una tormenta geomagnética G3 llega hoy a la Tierra tras una eyección de masa coronal del Sol
Una eyección de masa coronal lanzada el 6 de diciembre llega hoy a la Tierra y provoca una tormenta geomagnética G3, con posibles interferencias leves en comunicaciones y sistemas satelitales
Un estudio sobre las erupciones de una estrella pequeña y activa podría ayudar a detectar atmósferas en planetas habitables
Un estudio muestra que las erupciones de TRAPPIST-1 pueden limpiarse de los datos y mejorar la detección de atmósferas en planetas rocosos potencialmente habitables
Descifran cómo la materia oscura modifica la huella de las ondas gravitacionales en los agujeros negros
Científicos descubren que la materia oscura influye en ciertas ondas gravitacionales, revelando pistas sobre cómo se comportan cerca de grandes agujeros negros
Simulaciones avanzadas ofrecen nuevas pistas sobre la historia química de la Vía Láctea
Nuevas simulaciones galácticas revelan cómo surgieron los dos patrones químicos de la Vía Láctea y muestran que su evolución no siguió un camino único ni universal