Las luces más brillantes del universo nacen en la oscuridad de los agujeros negros
Los agujeros negros generan algunas de las fuentes de luz más brillantes del universo: descubre cómo lo hacen y por qué son clave para entender el cosmos
5 min lectura
Aunque los agujeros negros son conocidos por devorar todo lo que se acerca, incluidas la materia y la luz, la realidad astronómica es aún más sorprendente: las regiones que los rodean son algunas de las más brillantes del universo. Esta paradoja cósmica ha sido desentrañada por el Telescopio Espacial de Rayos Gamma Fermi de la NASA, que desde 2008 ha identificado miles de fuentes de luz gamma, muchas de ellas relacionadas con estos colosos gravitacionales.
Estas estructuras luminosas se concentran en el corazón de las llamadas galaxias activas, donde gigantescos agujeros negros supermasivos, con masas de hasta miles de millones de soles, consumen gas y polvo en remolinos incandescentes. A medida que el material cae, forma un disco de acreción que se calienta intensamente por la fricción, emitiendo energía en todo el espectro electromagnético, desde ondas de radio hasta rayos gamma.
Galaxias activas: motores luminosos del universo
En los núcleos galácticos activos (AGN), el gas y el polvo giran en torno al agujero negro a velocidades extremas, lo que genera calor y radiación. Este proceso convierte a las AGN en auténticas fábricas de luz cósmica. Más aún, en aproximadamente una de cada diez de estas galaxias activas, el agujero negro lanza chorros de partículas a casi la velocidad de la luz, un fenómeno fascinante que intriga a los astrofísicos.
Estos chorros, conocidos como jets relativistas, surgen de los polos del disco de acreción y pueden recorrer distancias enormes, afectando la materia interestelar que encuentran en su camino. En el caso de los blazares —una clase especial de AGN— estos chorros apuntan directamente hacia la Tierra, haciendo que brillen con una intensidad descomunal en el cielo de rayos gamma.
Un ejemplo impactante ocurrió en 2015, cuando el blazar 3C 279 protagonizó una llamarada tan intensa que superó incluso al púlsar Vela, normalmente la fuente de rayos gamma más brillante del firmamento. Este evento fue captado por el telescopio Fermi, reafirmando su papel como observador privilegiado de estos espectáculos cósmicos.
La física detrás de lo imposible
La pregunta es inevitable: ¿cómo pueden los agujeros negros, que por definición no dejan escapar la luz, generar fenómenos tan brillantes? La clave está en el material que gira alrededor de ellos, no en el agujero en sí. Al acercarse al horizonte de eventos, la materia se acelera, se calienta y emite radiación antes de cruzar el punto de no retorno.
En este entorno extremo, se producen procesos físicos capaces de acelerar partículas a velocidades cercanas a la luz. Estas partículas, al interactuar con campos magnéticos y otras partículas, emiten rayos gamma, la forma más energética de luz que conocemos. Gracias a instrumentos como Fermi, los científicos pueden rastrear estos procesos y reconstruir la historia energética del universo.
La orientación lo cambia todo
El tipo de AGN que vemos depende en gran parte de la orientación con respecto a la Tierra. Si observamos los chorros desde un ángulo lateral, hablamos de radiogalaxias. Pero si el chorro apunta hacia nosotros, se clasifica como blazar. Esta orientación determina la intensidad con la que detectamos sus emisiones.
Esta diversidad en apariencia ha permitido a los astrónomos clasificar miles de AGN y entender mejor cómo influyen en su entorno galáctico. Se cree que los AGN jugaron un papel fundamental en la evolución del universo primitivo, modificando la formación de estrellas y la distribución de materia a escalas cósmicas.
Lo que nos enseñan los blazares sobre el universo
Comprender el comportamiento de los AGN y en particular de los blazares no es solo una cuestión de curiosidad astronómica. Estos objetos actúan como laboratorios naturales para estudiar fenómenos físicos imposibles de replicar en la Tierra, como la aceleración de partículas a energías ultraaltas o la interacción entre gravedad extrema y radiación.
Además, revelan pistas esenciales sobre las primeras etapas del universo. Algunos AGN se formaron apenas unos cientos de millones de años después del Big Bang, y sus emisiones podrían ayudarnos a reconstruir la historia de la estructura cósmica. Estudiarlos nos conecta, literalmente, con los orígenes del cosmos tal como lo conocemos.
Referencias: NASA - Brightest Lights, Dark Origins
Preguntas frecuentes
Son galaxias cuyo centro emite gran cantidad de energía, alimentado por un agujero negro supermasivo.
Un blazar es un tipo de galaxia activa cuyo chorro de partículas apunta directamente a la Tierra.
Usan telescopios espaciales como el Fermi, que detectan rayos gamma invisibles al ojo humano.
La luz se produce en el gas y polvo que gira a su alrededor, no en el agujero negro mismo.
Continúa informándote
Las baterías muestran su brillo interior: así se ve cómo se cargan por dentro
Científicos de la Universidad de Purdue logran observar cómo las partículas de una batería brillan al cargarse, revelando cómo fluye la energía en su interior
Los científicos descartan una “quinta fuerza” en la materia oscura y refuerzan la teoría de la gravedad
Un estudio de la Universidad de Ginebra demuestra que la materia oscura se comporta según las leyes de la gravedad clásica, reduciendo las posibilidades de una fuerza desconocida en el cosmos
La reducción de energía solar y eólica en China pondrá en riesgo los ingresos de los inversores durante la próxima década
Según Wood Mackenzie, las limitaciones a la energía renovable en China afectarán la rentabilidad del sector solar y eólico en más de 20 provincias durante los próximos diez años
Científicos logran recrear el pigmento del camuflaje del pulpo en laboratorio por primera vez
Investigadores de la UC San Diego producen por primera vez xantomatina, el pigmento natural que permite el camuflaje de los pulpos y calamares, abriendo nuevas vías para materiales sostenibles
La Unión Europea evalúa debilitar su meta de reducción de emisiones para 2040 ante el bajo rendimiento de los bosques
Un borrador filtrado sugiere que la UE podría flexibilizar su objetivo de reducción de emisiones si los bosques no logran absorber suficiente CO₂, reavivando tensiones internas antes de la COP30