Nuevos datos vinculan al calcio con la simetría molecular en los orígenes de la vida
La preferencia de las biomoléculas por una determinada simetría espacial, conocida como homoquiralidad, ha sido durante décadas un misterio central en la investigación sobre el origen de la vida. Un reciente estudio publicado por el Instituto de Ciencias de Tokio propone un nuevo elemento clave en esta ecuación: el calcio.
Autor - Aldo Venuta Rodríguez
3 min lectura
Investigadores del Instituto de Ciencias de la Tierra y la Vida (ELSI), junto con colaboradores internacionales, han demostrado que los iones de calcio pueden modificar la forma en que ciertas moléculas simples, como el ácido tartárico, se agrupan para formar polímeros. Estos hallazgos podrían explicar cómo las moléculas precursoras de la vida desarrollaron una simetría uniforme, característica esencial de los sistemas biológicos actuales.
El estudio analizó la interacción del ácido tartárico, una molécula con dos centros quirales, con distintos niveles de calcio en un entorno simulado similar al de la Tierra primitiva. Los resultados mostraron que, sin calcio, el ácido tartárico en su forma pura polimeriza con facilidad, mientras que las mezclas racémicas —compuestas por proporciones iguales de las dos formas quirales— tienen más dificultades para hacerlo. En cambio, al introducir calcio, el patrón se invierte.
“El calcio parece actuar como un agente discriminador”, explicó Chen Chen, coautor del estudio e investigador en el Centro RIKEN para la Ciencia de los Recursos Sostenibles. “No solo favorece ciertas formas moleculares, sino que también cambia la forma en que estas moléculas se agrupan, facilitando la aparición de estructuras con una simetría predominante”.
Este comportamiento fue observado mediante la formación de cristales de tartrato de calcio en coexistencia con microgotas de poliésteres que contienen moléculas de tartrato. Los investigadores creen que estos cristales actúan como filtros que remueven las formas simétricas, dejando en solución moléculas con una orientación dominante. Este mecanismo podría haber contribuido a la aparición progresiva de moléculas homoquirales.
La investigación, revisada por pares, sugiere también que estos procesos químicos pudieron tener lugar en entornos específicos de la Tierra primitiva, como charcas, lagos o regiones volcánicas, donde las concentraciones de calcio variaban. Según los autores, zonas con baja concentración de este elemento podrían haber favorecido la aparición de quiralidad homogénea en los polímeros, mientras que regiones más ricas en calcio habrían generado mezclas sin una simetría clara.
“Solemos pensar en el origen de la vida desde las biomoléculas modernas como el ARN o las proteínas”, indicó Tony Z. Jia, codirector del estudio. “Pero este trabajo muestra que moléculas más simples, como los poliésteres formados a partir del ácido tartárico, también pudieron tener un papel crucial en los primeros pasos hacia la vida”.
Más allá de la bioquímica, el estudio establece puentes entre la geología, la física molecular y la ciencia de materiales, abriendo nuevas líneas de investigación sobre los procesos prebióticos. Los investigadores pertenecen a instituciones de siete países, lo que refuerza el carácter interdisciplinario y global del trabajo.
Aunque se trata de un avance importante, los autores reconocen que aún quedan muchos aspectos por explorar. Determinar si estos mecanismos pueden replicarse en condiciones más amplias o si existen paralelismos en otros entornos planetarios será clave para futuras investigaciones sobre la vida en el universo.
Continúa informándote
Balanophora, la planta sin clorofila que desafía a la biología con su extraña evolución
Un nuevo estudio revela cómo la planta parásita Balanophora perdió la fotosíntesis pero conserva plástidos reducidos y estrategias únicas que le permiten sobrevivir en bosques aislados de Asia
Los 10 descubrimientos fósiles más impactantes de 2025 según Iceebook
Un repaso a los diez hallazgos fósiles más sorprendentes elegidos por Iceebook, desde huellas raras hasta especies que cambian lo que sabemos de la evolución
Descubren en Qatar un fósil antiguo pariente del manatí que moldeó ecosistemas marinos durante 20 millones de años
Fósiles hallados en Qatar revelan una nueva especie ancestral de vaca marina que transformó los ecosistemas del Golfo Pérsico hace más de 20 millones de años
Así empezó la entrada de oxígeno en los océanos hace más de 2.300 millones de años
Nuevas evidencias revelan cómo comenzó la entrada de oxígeno en los océanos hace más de 2.300 millones de años, un cambio que transformó la historia de la Tierra
Nuevos datos muestran que la falta de sueño es el factor que más reduce la esperanza de vida, por encima de la dieta y la actividad física
Nuevos datos revelan que dormir menos de siete horas es el factor que más reduce la esperanza de vida, incluso por encima de la dieta y el ejercicio
Así evolucionó Escovopsis, el hongo que vive dentro de las colonias de hormigas desde hace 38 millones de años
Un estudio reconstruye cómo Escovopsis evolucionó junto a las hormigas agricultoras durante millones de años, revelando cambios en su forma, distribución y adaptación dentro de las colonias