Logotipo de Iceebook Iceebook - Noticias de Ciencia, Tecnología, Economía y más

Descubren una nueva forma de control en el empalme del ARN humano

Biólogos del MIT han descubierto una nueva capa de regulación en el proceso de empalme del ARN que podría redefinir la comprensión sobre la expresión genética en humanos. Esta investigación, publicada por MIT News y liderada por el profesor Christopher Burge, identificó a la familia de proteínas LUC7 como un factor clave en el control del empalme de hasta el 50 % de todos los intrones humanos, lo que sugiere un nivel de complejidad genética mayor al estimado anteriormente.

Autor - Aldo Venuta Rodríguez

3 min lectura

Ilustración de proteínas Luc7 en azul sobre células humanas
Las proteínas Luc7 (en azul) son clave para el empalme preciso del ARN mensajero. Créditos: Cortesía de los investigadores, editado por MIT News

El empalme del ARN es fundamental para la expresión génica, ya que permite a las células generar proteínas a partir de los genes. Este proceso elimina los intrones, regiones no codificantes, y une los exones, que sí contienen instrucciones para crear proteínas. Tradicionalmente, se creía que la fuerza de unión entre el ARN mensajero y una molécula conocida como ARNnp U1 determinaba qué intrones se eliminaban. Sin embargo, el estudio del MIT reveló que las proteínas LUC7 también desempeñan un papel esencial en este proceso, regulando la eliminación de intrones en aproximadamente la mitad de los genes humanos.

Connor Kenny, autor principal del estudio, explicó que estas proteínas se asocian con sitios de empalme específicos, denominados "diestros" y "zurdos". Dos de las proteínas LUC7 interactúan con los sitios diestros, mientras que una tercera lo hace con los zurdos. Esta distinción permite una regulación independiente de distintos grupos de intrones, lo que podría explicar la capacidad de los organismos complejos, como los humanos, para generar múltiples proteínas a partir de un solo gen. Según Kenny, esta capacidad ofrece una ventaja evolutiva al permitir tipos de regulación genética más sofisticados.

El estudio también encontró implicaciones médicas significativas. Se observó que mutaciones o pérdidas del gen LUC7L2, responsable de codificar una de estas proteínas, están vinculadas a cerca del 10 % de los casos de leucemia mieloide aguda (LMA). Estas mutaciones afectan la eficiencia del empalme en sitios diestros, lo que lleva a alteraciones metabólicas relacionadas con la enfermedad. Christopher Burge destacó que comprender estas interacciones podría ser clave para desarrollar terapias dirigidas, especialmente aprovechando medicamentos que estabilizan la interacción del ARNnp U1 con sitios de empalme específicos.

Otro hallazgo relevante del estudio, realizado en colaboración con Sascha Laubinger de la Universidad Martin Luther de Halle-Wittenberg, fue que esta forma de control del empalme del ARN también está presente en plantas. Los resultados sugieren que el mecanismo surgió en un ancestro común de plantas, animales y hongos, aunque se perdió en estos últimos tras su divergencia. Esta observación refuerza la idea de que los humanos y las plantas poseen una maquinaria de empalme más compleja, adaptada a las necesidades evolutivas de organismos con estructuras y funciones celulares más avanzadas.

Publicidad

El equipo del MIT planea profundizar en el estudio de las estructuras formadas por la interacción de las proteínas LUC7 con el espliceosoma. Esta investigación futura podría arrojar luz sobre cómo se regulan diferentes tipos de intrones y cómo estas interacciones podrían aprovecharse para tratamientos médicos. La relevancia de estos hallazgos radica en su potencial para revolucionar la comprensión de la expresión genética y abrir nuevas vías para terapias personalizadas en enfermedades como la leucemia.

Este avance científico, financiado por los Institutos Nacionales de Salud de EE. UU. y la Fundación de Investigación Alemana, fue reportado por MIT News y se publicó en la revista Nature Communications, destacando la creciente comprensión sobre los complejos procesos moleculares que rigen la vida humana.

Continúa informándote

Océano primitivo oscuro con un resplandor azulado y partículas que simbolizan la entrada temprana de oxígeno
Ciencia

Así empezó la entrada de oxígeno en los océanos hace más de 2.300 millones de años

Nuevas evidencias revelan cómo comenzó la entrada de oxígeno en los océanos hace más de 2.300 millones de años, un cambio que transformó la historia de la Tierra

Persona joven en la cama de noche mirando el teléfono con el rostro iluminado y expresión de cansancio
Ciencia

Nuevos datos muestran que la falta de sueño es el factor que más reduce la esperanza de vida, por encima de la dieta y la actividad física

Nuevos datos revelan que dormir menos de siete horas es el factor que más reduce la esperanza de vida, incluso por encima de la dieta y el ejercicio

Hormiga Atta retirando fragmentos del jardín de hongos de su colonia
Ciencia

Así evolucionó Escovopsis, el hongo que vive dentro de las colonias de hormigas desde hace 38 millones de años

Un estudio reconstruye cómo Escovopsis evolucionó junto a las hormigas agricultoras durante millones de años, revelando cambios en su forma, distribución y adaptación dentro de las colonias

Incendio forestal activo cerca del lago Okanagan con columnas de humo elevándose sobre el paisaje
Ciencia

Modelos de IA muestran que los incendios forestales son más caóticos de lo que se creía

Un estudio de UBC Okanagan demuestra con visión computacional que los incendios forestales se propagan con más variabilidad y aleatoriedad de la que asumen los modelos tradicionales

Campamento de globos de la NASA en la plataforma de hielo Ross, cerca de la estación McMurdo en la Antártida
Ciencia

La NASA prepara dos lanzamientos de globos científicos desde la Antártida para estudiar fenómenos extremos del universo

La NASA realizará dos lanzamientos de globos de gran altitud desde la Antártida para investigar neutrinos de ultraalta energía y posibles señales de materia oscura

Vampiroteuthis infernalis realista iluminado por bioluminiscencia en aguas profundas
Ciencia

El genoma del calamar vampiro ilumina cómo se separaron pulpos, calamares y sepias hace 300 millones de años

Un nuevo análisis revela que el calamar vampiro conserva rasgos genéticos ancestrales que ayudan a entender la separación evolutiva de pulpos, calamares y sepias