El neutrino es más ligero de lo imaginado: el experimento KATRIN establece su límite superior de masa

Un nuevo hito científico redefine los márgenes de una de las partículas más esquivas y revela claves sobre los orígenes del cosmos

Autor - Aldo Venuta Rodríguez

4 min lectura

Vista interna del espectrómetro principal del experimento KATRIN para el estudio de la masa del neutrino
Espectrómetro de 24 metros del experimento KATRIN, diseñado para medir la masa del neutrino a partir de desintegraciones de tritio. (Créditos: Markus Breig / KIT)

Después de décadas de especulación científica, una nueva medición establece el límite más estricto conocido para la masa del neutrino, una de las partículas más enigmáticas del universo. El resultado, logrado por el experimento KATRIN (Karlsruhe Tritium Neutrino Experiment), determina que su masa no supera los 0,45 electronvoltios (eV), según un estudio publicado en la revista Science el 10 de abril de 2025. Esta cifra sitúa al neutrino como un millón de veces más liviano que el electrón y marca un hito en la física de partículas.

El experimento KATRIN, liderado por el Instituto Tecnológico de Karlsruhe (KIT) en Alemania, lleva desde 2019 buscando responder a una de las grandes preguntas que aún desafían al modelo estándar de la física: ¿cuánto pesa realmente el neutrino? Su masa, aunque diminuta, tiene implicaciones cósmicas, desde la evolución del universo primitivo hasta la formación de galaxias y la naturaleza de la materia oscura.

La técnica empleada por KATRIN se basa en el análisis de la desintegración beta de un isótopo de hidrógeno llamado tritio. En este proceso, un neutrón se transforma en un protón, emitiendo un electrón y un neutrino. Aunque este último no puede ser detectado directamente, su presencia se infiere midiendo la energía del electrón emitido. La diferencia entre esta energía y la total del proceso proporciona una estimación de la masa del neutrino.

Investigadores trabajando dentro del sistema experimental KATRIN en Alemania
Científicos inspeccionan el corazón del experimento KATRIN en el Instituto Tecnológico de Karlsruhe, Alemania. (Créditos: KIT / vía Karlsruhe Institute of Technology)

Entre 2019 y 2021, el equipo de KATRIN recopiló datos durante 259 días, registrando la energía de unos 36 millones de electrones. Esta muestra, seis veces más amplia que en mediciones anteriores, permitió afinar el cálculo y reducir el límite superior de la masa con una confianza estadística del 90%.

Publicidad

“Este resultado representa la tercera mejora en el límite de masa del neutrino obtenida por KATRIN, acercándonos cada vez más a una medición directa y definitiva,” explica la física Loredana Gastaldo, coautora del estudio. Se espera que al finalizar la campaña de medición en 2025, tras alcanzar los 1.000 días de datos acumulados, se pueda estimar la masa con una precisión sin precedentes.

Los neutrinos son omnipresentes: cada segundo, unos 100 billones atraviesan nuestro cuerpo sin que los notemos. Son partículas sin carga, prácticamente sin masa y con una capacidad casi fantasmal de atravesar la materia. Por eso mismo, entender su comportamiento es crucial para conocer mejor el universo, desde los segundos posteriores al Big Bang hasta los procesos extremos en supernovas y agujeros negros.

El experimento también podría arrojar luz sobre otros misterios fundamentales. Se plantea, por ejemplo, la existencia de una cuarta clase de neutrinos, los llamados "neutrinos estériles", que no interactúan con la materia convencional y podrían formar parte de la elusiva materia oscura.

A medida que KATRIN avanza hacia sus últimas fases, la comunidad científica sigue atenta. Un hallazgo definitivo sobre la masa del neutrino tendría repercusiones tanto en la física teórica como en la cosmología, y marcaría el fin de una búsqueda que comenzó hace casi un siglo con la predicción teórica de esta partícula por Wolfgang Pauli en 1930.

Publicidad

Aún sin una cifra definitiva, el límite ahora establecido refuerza el compromiso de la ciencia internacional con la precisión, la colaboración y la exploración de los fundamentos más profundos de la naturaleza. El neutrino, por diminuto que sea, podría ser la clave para entender el cosmos.

Continúa informándote

Descarga de sacos de grano desde barcos medievales junto a una ciudad portuaria
Ciencia

Erupciones volcánicas y hambruna pudieron desencadenar la llegada de la Peste Negra a la Europa medieval

Un estudio señala que erupciones volcánicas y una hambruna entre 1345 y 1347 forzaron cambios en el comercio de grano que habrían introducido la Peste Negra en Europa

Escena del Cretácico Superior con un Nanotyrannus enfrentándose a dos T. rex juveniles mientras un subadulto observa
Ciencia

Nuevo estudio confirma que Nanotyrannus no era un T. rex joven, sino una especie propia

Un análisis microscópico del hueso hioides demuestra que Nanotyrannus era un depredador adulto distinto del T rex, resolviendo décadas de debate sobre su identidad

Células primitivas flotando sobre respiraderos hidrotermales iluminados en un océano oscuro.
Ciencia

La vida compleja surgió mucho antes de lo que se pensaba, incluso en un planeta casi sin oxígeno

Un estudio muestra que las primeras células complejas aparecieron hace 2.900 millones de años, mucho antes del aumento de oxígeno y antes de la llegada de las mitocondrias

Chimpancé
Ciencia

Los humanos tenemos áreas cerebrales que responden de forma especial a las voces de los chimpancés

Un estudio de la Universidad de Ginebra revela que partes del cerebro humano reaccionan de forma específica a las vocalizaciones de los chimpancés, lo que aporta pistas sobre el origen del reconocimiento de voz y la evolución del lenguaje

Bidón blanco de peróxido de hidrógeno con tapa amarilla y etiqueta azul
Ciencia

Descubren una forma más limpia de producir peróxido de hidrógeno usando solo luz solar, agua y aire

Un nuevo método desarrollado por Cornell permite generar peróxido de hidrógeno usando solo luz solar, agua y aire, una alternativa más limpia y segura al proceso químico tradicional

Representación de una anaconda de gran tamaño mostrando su cuerpo robusto y su longitud característica
Ciencia

Los fósiles revelan que las anacondas ya eran gigantes hace 12 millones de años

Nuevos análisis de fósiles hallados en Venezuela muestran que las anacondas ya alcanzaban tamaños gigantes hace 12 millones de años y han mantenido esa escala corporal hasta hoy