Logotipo de Iceebook Iceebook - Noticias de Ciencia, Tecnología, Economía y más

Una IA recrea 500 millones de años la evolución y diseña una proteína jamás vista en la naturaleza

Un modelo de inteligencia artificial ha logrado lo impensable, simular la evolución de proteínas durante 500 millones de años y generar una nueva estructura nunca vista en la naturaleza. La proteína, denominada esmGFP, es fluorescente y su diseño es el resultado de un entrenamiento masivo con datos evolutivos. Este avance, liderado por la startup EvolutionaryScale, podría abrir nuevas puertas en la medicina y la biotecnología.

Autor - Aldo Venuta Rodríguez

2 min lectura

Ilustración de la nueva proteína fluorescente esmGFP, creada por inteligencia artificial tras simular 500 millones de años de evolución.
Créditos: EvolutionaryScale

El modelo de IA, conocido como ESM3, ha sido desarrollado para comprender la estructura y función de proteínas a partir de grandes volúmenes de datos. Utilizando información de más de 3.000 millones de secuencias proteicas, esta tecnología ha permitido generar estructuras biológicas funcionales que, en la naturaleza, habrían requerido cientos de millones de años para evolucionar.

Uno de los hallazgos más impactantes fue la creación de una proteína fluorescente con un 58% de similitud con proteínas naturales conocidas, pero con una secuencia completamente nueva. Este descubrimiento demuestra que la IA puede diseñar proteínas con propiedades inéditas, abriendo la posibilidad de aplicaciones en biomedicina, biología sintética y ciencia ambiental.

Según los investigadores, el modelo fue entrenado con datos provenientes de entornos extremos como respiraderos hidrotermales, suelos terrestres y las profundidades oceánicas. Esta diversidad le ha permitido predecir y diseñar estructuras proteicas con un nivel de precisión sin precedentes.

Las implicaciones de este avance son enormes. La posibilidad de crear proteínas a medida mediante IA podría revolucionar el desarrollo de fármacos, biomateriales y tecnologías ambientales. A medida que esta tecnología evoluciona, los científicos esperan explorar aún más aplicaciones innovadoras en el campo de la biología sintética.

Publicidad

Lectura recomendada

Continúa informándote

Un cambio químico en los océanos pudo poner fin a la era de invernadero de la Tierra
Ciencia

Un cambio químico en los océanos pudo poner fin a la era de invernadero de la Tierra

Un estudio revela que la fuerte caída del calcio en los océanos durante los últimos 66 millones de años pudo reducir el CO₂ atmosférico y enfriar el clima global

La circulación del Atlántico se mantuvo activa durante la última glaciación
Ciencia

La circulación del Atlántico se mantuvo activa durante la última glaciación

Un estudio muestra que las grandes corrientes del Atlántico siguieron activas durante la última edad de hielo, manteniendo el transporte de calor hacia el Atlántico Norte

Las rocas volcánicas revelan una colisión temprana entre América Central y del Sur
Ciencia

Las rocas volcánicas revelan una colisión temprana entre América Central y del Sur

Un estudio geológico basado en propiedades magnéticas de rocas volcánicas sugiere que la colisión entre Centroamérica y Sudamérica ocurrió antes de lo estimado

Científicos argentinos descubren una forma de potenciar antibióticos contra bacterias resistentes
Ciencia

Científicos argentinos descubren una forma de potenciar antibióticos contra bacterias resistentes

Investigadores argentinos hallaron que un compuesto del cannabis puede potenciar un antibiótico clave y ayudar a eliminar bacterias multirresistentes responsables de cientos de miles de muertes al año

Cómo se mide realmente un terremoto
Ciencia

Cómo se mide realmente un terremoto

La magnitud de un terremoto no se mide solo con una cifra. Instrumentos, escalas y datos físicos permiten calcular su energía real y evaluar sus efectos en la superficie

A bordo de la ISS, fagos y bacterias coevolucionan de forma distinta bajo microgravedad
Ciencia

A bordo de la ISS, fagos y bacterias coevolucionan de forma distinta bajo microgravedad

Un estudio en PLOS Biology comparó infecciones de E. coli por el fago T7 en la Tierra y en la ISS, y halló mutaciones y dinámicas de adaptación diferentes en microgravedad