Investigadores buscan señales de gravedad cuántica en el fondo del Mediterráneo

Investigadores han explorado la posibilidad de que la gravedad cuántica afecte el comportamiento de los neutrinos utilizando el detector submarino KM3NeT. A pesar de no encontrar señales de decoherencia, los resultados permiten establecer límites más precisos y abren nuevas vías para futuras investigaciones.

Autor - Aldo Venuta Rodríguez

3 min lectura

Módulo de detección del telescopio submarino KM3NeT siendo desplegado en el mar Mediterráneo para la detección de neutrinos.
Módulo de detección de KM3NeT descendiendo en el mar como parte del observatorio submarino de neutrinos. Crédito: KM3NeT

La gravedad cuántica sigue siendo una de las incógnitas más grandes de la física moderna. Mientras la relatividad general describe la gravedad a escalas macroscópicas, la mecánica cuántica rige el comportamiento de partículas subatómicas. Sin embargo, ambas teorías son incompatibles entre sí, lo que ha impulsado la búsqueda de una teoría unificada. En este contexto, los neutrinos podrían desempeñar un papel clave.

Los neutrinos son partículas elementales extremadamente escurridizas que atraviesan la materia sin apenas interactuar. Esto hace que sean difíciles de detectar, pero en raras ocasiones pueden chocar con moléculas de agua, generando un destello de radiación de Čerenkov. Esta luz azulada puede ser captada por telescopios submarinos como el KM3NeT, una instalación científica sumergida en el Mediterráneo a 2450 metros de profundidad.

Uno de los fenómenos más fascinantes de los neutrinos es su capacidad de oscilar entre diferentes estados de masa mientras viajan por el espacio. Este proceso ocurre gracias a la coherencia cuántica, pero si la gravedad cuántica tuviera un efecto sobre estas partículas, podría interrumpir o atenuar sus oscilaciones en un fenómeno conocido como decoherencia.

"Algunas teorías predicen que los neutrinos pueden interactuar con su entorno, lo que provocaría una pérdida de coherencia en sus oscilaciones", explica Nadja Lessing, física del Instituto de Física Corpuscular de la Universidad de Valencia y autora del estudio publicado en JCAP. "Si esto ocurriera, podríamos detectarlo observando alteraciones en los patrones de oscilación de los neutrinos."

Publicidad

El equipo utilizó el detector KM3NeT/ORCA para analizar el comportamiento de los neutrinos en busca de signos de decoherencia. Sin embargo, los resultados no mostraron evidencia de este fenómeno. "Nuestros datos sugieren que, si la gravedad cuántica afecta a los neutrinos, su impacto es menor de lo que podemos detectar con la tecnología actual", afirma Lessing.

A pesar de ello, el estudio ha permitido establecer límites más estrictos a la posible influencia de la gravedad cuántica en los neutrinos. "Cada nuevo dato nos acerca un paso más a comprender cómo funciona realmente el universo", señala la investigadora. "No encontrar decoherencia también es un resultado importante, ya que nos ayuda a refinar las predicciones y descartar ciertas teorías."

La búsqueda de evidencia directa de la gravedad cuántica continúa siendo un desafío, pero los neutrinos siguen atrayendo el interés de la comunidad científica. "Si logramos detectar decoherencia en el futuro, podríamos estar ante una de las mayores revoluciones en la física moderna", concluye Lessing. "Los experimentos con neutrinos pueden ofrecernos pistas cruciales sobre la naturaleza fundamental del espacio-tiempo."

Publicidad

Continúa informándote

Campamento de globos de la NASA en la plataforma de hielo Ross, cerca de la estación McMurdo en la Antártida
Ciencia

La NASA prepara dos lanzamientos de globos científicos desde la Antártida para estudiar fenómenos extremos del universo

La NASA realizará dos lanzamientos de globos de gran altitud desde la Antártida para investigar neutrinos de ultraalta energía y posibles señales de materia oscura

Vampiroteuthis infernalis realista iluminado por bioluminiscencia en aguas profundas
Ciencia

El genoma del calamar vampiro ilumina cómo se separaron pulpos, calamares y sepias hace 300 millones de años

Un nuevo análisis revela que el calamar vampiro conserva rasgos genéticos ancestrales que ayudan a entender la separación evolutiva de pulpos, calamares y sepias

Rayo láser verde delgado atravesando un ambiente con ligera niebla
Ciencia

Cómo funciona de verdad un láser y por qué no se ve “el rayo” en el aire

Los láseres producen un tipo de luz extremadamente ordenada y concentrada, pero su rayo casi nunca se ve en el aire. Aquí te explicamos cómo funciona realmente un láser y por qué el haz visible es solo una ilusión del ambiente

Boca humana emitiendo ondas acústicas
Ciencia

Cómo los sonidos de las palabras influyen en lo atractivas y memorables que nos parecen

Un estudio revela que ciertos sonidos hacen que las palabras nos parezcan más atractivas y fáciles de recordar, mostrando cómo la fonética influye en la emoción y la memoria

Modelo tridimensional de la cantera de Rano Raraku generado a partir de miles de imágenes aéreas
Ciencia

Así es el nuevo modelo 3D que permite explorar las estatuas de la Isla de Pascua desde casa

Un modelo 3D de alta resolución de la cantera de Rano Raraku permite explorar desde casa el paisaje donde se tallaron los moáis y revela cómo trabajaban distintos talleres en la Isla de Pascua

Investigadores perforando un núcleo de sedimento en el lago Stoneman con equipo de muestreo
Ciencia

El suroeste de EE. UU. fue más polvoriento entre glaciaciones: un registro de 230.000 años lo demuestra

Un registro de 230.000 años del lago Stoneman revela que el suroeste de EE. UU. emitió más polvo entre glaciaciones que durante ellas, desafiando patrones globales