Investigadores del MIT logran una interconexión cuántica para procesadores superconductores

Un equipo del MIT ha desarrollado una interconexión que permite la comunicación directa entre procesadores cuánticos, allanando el camino para computadoras cuánticas más eficientes y escalables.

Autor - Aldo Venuta Rodríguez

4 min lectura

Ilustración abstracta de interconexiones cuánticas, representando la transmisión de información mediante fotones en guías de ondas superconductoras.

Las computadoras cuánticas tienen el potencial de resolver problemas imposibles para las computadoras clásicas, pero su desarrollo enfrenta desafíos significativos. Uno de los mayores obstáculos es la conectividad entre múltiples procesadores cuánticos superconductores. Actualmente, la transmisión de información cuántica requiere una serie de transferencias entre nodos, lo que genera errores acumulativos y dificulta la escalabilidad.

Para abordar esta limitación, un equipo de investigadores del Instituto Tecnológico de Massachusetts (MIT) ha desarrollado un innovador sistema de interconexión cuántica. A diferencia de las arquitecturas actuales, esta tecnología permite una comunicación escalable “de todos a todos”, es decir, cualquier procesador puede conectarse directamente con otro sin necesidad de múltiples intermediarios.

El avance clave de esta investigación es el uso de una guía de ondas superconductora, un cable especializado que transporta fotones de microondas entre los procesadores cuánticos. Esta infraestructura permite una transmisión más eficiente de información cuántica y reduce las tasas de error en la comunicación.

El equipo del MIT diseñó un sistema en el que dos procesadores cuánticos están interconectados a través de la guía de ondas. Utilizando pulsos de microondas, lograron controlar la dirección en la que se propagan los fotones, asegurando que cada fotón llegue a su destino sin interferencias.

Publicidad

Uno de los aspectos más destacados de este avance es la demostración exitosa del entrelazamiento remoto, un fenómeno cuántico en el que dos cúbits pueden compartir información sin estar físicamente conectados. Este es un paso fundamental hacia el desarrollo de redes cuánticas distribuidas.

Para lograr un entrelazamiento eficiente, los investigadores aplicaron un enfoque innovador: interrumpieron los pulsos de emisión de fotones a la mitad de su duración. Esto generó un efecto en el que, cuánticamente, el fotón estaba “retenido y emitido” al mismo tiempo. Una vez que el módulo receptor absorbía el fotón, los dos cúbits quedaban entrelazados.

Sin embargo, el proceso de transmisión no es perfecto. Factores como las uniones y conexiones en la guía de ondas pueden distorsionar los fotones y afectar su eficiencia de absorción. Para mitigar este problema, los científicos utilizaron un algoritmo de aprendizaje por refuerzo que predistorsiona los fotones antes de su emisión, maximizando la absorción en el módulo receptor.

Gracias a este método, lograron una eficiencia de absorción de fotones superior al 60%, un resultado clave para demostrar la viabilidad del entrelazamiento remoto en una red escalable de procesadores cuánticos.

Publicidad

Este avance en la interconexión cuántica es un paso crucial hacia la creación de computadoras cuánticas más escalables y eficientes. Según los investigadores, esta tecnología permitirá construir redes con conectividad universal, lo que significa que múltiples módulos cuánticos podrán compartir información de manera flexible.

A largo plazo, este tipo de interconexiones podrían integrarse en una red cuántica global, permitiendo el desarrollo de un internet cuántico con capacidades avanzadas de procesamiento de datos y seguridad.

El estudio, publicado en la revista Nature Physics, fue liderado por un equipo del MIT y el Laboratorio Lincoln, incluyendo a Aziza Almanakly, Beatriz Yankelevich y William D. Oliver. La investigación recibió financiamiento de la Oficina de Investigación del Ejército de EE.UU., el Centro de Computación Cuántica de AWS y la Oficina de Investigación Científica de la Fuerza Aérea de EE.UU.

En el futuro, los científicos planean mejorar la eficiencia de absorción optimizando la trayectoria de propagación de los fotones. También exploran la posibilidad de integrar módulos tridimensionales para reducir errores y aumentar la fidelidad de la transmisión cuántica.

Publicidad

"Nuestro protocolo de generación de entrelazamiento remoto puede escalarse a otros tipos de computadoras cuánticas y sistemas de internet cuántico más grandes", concluye Almanakly.

Preguntas frecuentes

¿Qué es la interconexión cuántica desarrollada por el MIT?

Es un sistema basado en una guía de ondas superconductora que permite la comunicación directa entre procesadores cuánticos, mejorando la eficiencia y escalabilidad de las redes cuánticas.

¿Por qué es importante el entrelazamiento remoto?

El entrelazamiento remoto permite que cúbits compartan información sin estar físicamente conectados, un paso clave para construir redes cuánticas distribuidas y mejorar la computación cuántica.

¿Cómo lograron los investigadores maximizar la eficiencia de absorción de fotones?

Utilizaron un algoritmo de aprendizaje por refuerzo para predistorsionar los fotones antes de su emisión, logrando una eficiencia de absorción superior al 60%.

¿Dónde se ha publicado esta investigación?

El estudio fue publicado en la revista Nature Physics y contó con el apoyo de instituciones como el MIT y el Laboratorio Lincoln.

Continúa informándote

Laptop con un gráfico de IA encendido sobre un escritorio de madera, acompañado de libros cerrados y lápices de colores frente a una pizarra con diagramas
Tecnología

La educación superior acelera reformas para integrar la IA generativa en sus planes de estudio

Las universidades avanzan en reformas urgentes para integrar la IA generativa en sus planes de estudio, transformando la enseñanza, la evaluación y la formación docente

Rostro humanoide azul con patrones de red neuronal, disolviéndose en una nube de puntos y líneas luminosas
Tecnología

La IA se expande a gran velocidad, pero sus alucinaciones revelan límites inevitables

La IA crece a un ritmo histórico, pero las alucinaciones siguen mostrando límites inevitables en su fiabilidad, incluso en los modelos más avanzados

Ciudad futurista flotando entre nubes, con rascacielos iluminados por luz cálida sobre un cielo azul suave
Tecnología

Los líderes de Silicon Valley aceleran proyectos de ciudades independientes con sus propias leyes

Figuras influyentes de Silicon Valley impulsan proyectos para crear ciudades independientes con mayor autonomía y reglas propias, un modelo que divide opiniones

Logotipos de OpenAI y Microsoft sobre un fondo degradado en tonos azul, violeta y verde
Tecnología

Documentos filtrados destapan los millonarios pagos de OpenAI a Microsoft

Documentos filtrados muestran que OpenAI pagó a Microsoft más de 1.300 millones en 2024 y 2025 por uso de computación e ingresos compartidos, revelando la enorme presión financiera del negocio de la IA

Teléfono móvil inclinado sobre una mesa de madera con el logotipo de WhatsApp en la pantalla
Tecnología

WhatsApp integrará chats con apps externas en Europa para cumplir la ley de la UE

WhatsApp permitirá chatear con apps externas en Europa desde el 14 de noviembre de 2025 para cumplir la Ley de Mercados Digitales. BirdyChat y Haiket serán las primeras en integrarse

Teléfono móvil inclinado sobre una mesa de madera con la pantalla encendida mostrando el logotipo de xAI en fondo oscuro
Tecnología

Elon Musk desmiente el informe sobre una recaudación de 15.000 millones de dólares por parte de xAI

Elon Musk negó que su empresa de inteligencia artificial xAI haya recaudado 15.000 millones de dólares, tras un informe de CNBC que valoraba la compañía en 200.000 millones