La NASA detecta desde el espacio el plancton que alimenta a las últimas ballenas francas

Datos satelitales permiten rastrear al Calanus, diminuto plancton vital para ballenas francas. Una técnica de la NASA podría evitar su extinción

Ballena franca del Atlántico Norte nadando en la superficie del Golfo de Maine
Una ballena franca en peligro crítico se alimenta en aguas donde se rastrea plancton vital con ayuda satelital. Crédito: Acuario de Nueva Inglaterra, tomada con el permiso NMFS n.° 25739

En el corazón del Golfo de Maine, una de las criaturas más amenazadas del planeta —la ballena franca del Atlántico Norte— se alimenta de un enemigo invisible a la vista humana: el diminuto zooplancton Calanus finmarchicus. Este organismo, no más grande que un grano de arroz, es el principal sustento de estas ballenas, de las cuales apenas sobreviven unos 370 ejemplares.

Vista microscópica del copépodo Calanus finmarchicus utilizado en estudios oceánicos
Imagen ampliada del diminuto Calanus, principal fuente de alimento de la ballena franca. Créditos: Crédito: Cameron Thompson

Tradicionalmente, localizar bancos de Calanus implicaba largas misiones con redes de arrastre y laboriosos conteos manuales. Ahora, investigadores apoyados por la NASA han demostrado que es posible detectarlos desde el espacio mediante los satélites Aqua y su instrumento MODIS, capaces de captar los sutiles cambios de color causados por el pigmento rojizo del plancton.

El pigmento astaxantina, responsable del tono rosado del salmón y presente en el Calanus, altera la forma en que la luz solar se refleja en el agua. Detectando estos cambios, los científicos logran mapear concentraciones del zooplancton con precisión sin precedentes, revelando nuevas zonas de alimentación para las ballenas y posibles rutas migratorias hasta ahora desconocidas.

“No sabíamos que podíamos buscar al Calanus de esta forma”, explicó Catherine Mitchell, del Laboratorio Bigelow de Ciencias Oceánicas. Esta nueva técnica puede ayudar a prevenir colisiones mortales con barcos y enredos en redes de pesca, las dos mayores amenazas para esta especie en peligro crítico.

Publicidad
Imagen satelital del Golfo de Maine con floraciones visibles de fitoplancton
El satélite PACE capta señales ópticas del plancton que ayudan a mapear rutas de alimentación. Créditos: NASA

El uso de esta tecnología ya ha sido probado en aguas noruegas y ahora se ha refinado para su aplicación en Nueva Inglaterra. Allí, las ballenas han cambiado sus rutas desde 2010, sorprendiendo a pescadores y científicos. Con datos satelitales, se espera anticipar estos movimientos y proteger tanto a los animales como a las actividades económicas costeras.

Sin embargo, MODIS está cerca del final de su vida útil. La esperanza recae en el nuevo satélite PACE, lanzado en 2024, que puede detectar más de 280 longitudes de onda frente a las 10 actuales, permitiendo una identificación más detallada de diferentes tipos de plancton, incluso en condiciones oceánicas complejas.

"El objetivo no es ver cada copépodo, sino tener otra herramienta para anticipar y tomar decisiones", señala Bridget Seegers, del equipo PACE en el Centro Goddard de la NASA. Con esta información, comunidades pesqueras y autoridades podrán reaccionar con mayor tiempo ante la llegada de ballenas, evitando tragedias y conservando un ecosistema en equilibrio.

Referencias: NASA, NOAA

Publicidad

Preguntas frecuentes

¿Qué plancton alimenta a las ballenas francas del Atlántico Norte?

El zooplancton Calanus finmarchicus, rico en lípidos, es su principal fuente de alimento.

¿Cómo se detecta este plancton desde el espacio?

A través del satélite Aqua de la NASA, que capta cambios de color por su pigmento astaxantina.

¿Qué beneficios tiene esta técnica para las ballenas?

Permite anticipar sus rutas de alimentación y evitar colisiones o enredos con embarcaciones.

¿Qué mejora ofrece el satélite PACE respecto a MODIS?

Detecta muchas más longitudes de onda, mejorando la precisión en la identificación de plancton.

Continúa informándote

Visualización digital que representa la formación de un agujero negro
Espacio

Científicos logran explicar cómo se fusionaron dos agujeros negros que no deberían existir

Un estudio del Instituto Flatiron revela que los campos magnéticos permiten la formación y fusión de agujeros negros en un rango de masa que antes se creía imposible

Pasillo interior de un centro de datos con servidores iluminados en azul y verde
Medio Ambiente

La IA podría emitir tanto CO₂ como 10 millones de coches en 2030, según Cornell

Investigadores de Cornell alertan que el crecimiento de la inteligencia artificial podría liberar hasta 44 millones de toneladas de CO₂ anuales y agravar la crisis hídrica si no se toman medidas urgentes

Sibani Lisa Biswal, Yuge Feng y Haotian Wang posan en el laboratorio de la Universidad Rice
Energía

Crean un reactor que transforma residuos de baterías en nuevo litio listo para usar

Ingenieros de la Universidad Rice desarrollan un reactor capaz de reciclar residuos de baterías y producir hidróxido de litio de alta pureza sin usar ácidos ni procesos contaminantes

Estructura de doble hélice del ADN en color azul brillante sobre un fondo oscuro
Ciencia

El ADN neandertal revela por qué nuestros rostros son distintos a los suyos

Un estudio de la Universidad de Edimburgo muestra que una región del ADN neandertal activa más un gen clave en la formación de la mandíbula, lo que explica sus rostros más robustos

Cometa 3I ATLAS observado por el telescopio espacial Hubble mostrando su núcleo y halo azul brillante
Espacio

El cometa 3I/Atlas emite su primera señal de radio y pone fin a las teorías conspirativas

El radiotelescopio MeerKAT detectó la primera señal de radio del cometa 3I/Atlas, confirmando su naturaleza natural y descartando teorías sobre un posible origen artificial del visitante interestelar