NASA desarrolla misión ARCSTONE para mejorar la calibración de sensores satelitales
La NASA está desarrollando ARCSTONE, un ambicioso proyecto que tiene como objetivo redefinir la forma en que los instrumentos de observación terrestre se calibran desde el espacio. Esta misión utilizará un espectrómetro avanzado montado en un pequeño satélite en órbita terrestre baja (LEO) para medir la reflectancia espectral de la Luna con una precisión sin precedentes, estableciendo un estándar de calibración absoluto trazable al Sistema Internacional de Unidades (SI).
Autor - Aldo Venuta Rodríguez
4 min lectura
La importancia de la calibración en teledetección
La teledetección desde el espacio depende en gran medida de la calibración precisa de los sensores, ya que incluso pequeñas variaciones en las mediciones pueden generar datos inconsistentes y poco fiables. Históricamente, la Luna ha sido considerada una excelente fuente de calibración debido a su superficie estable y predecible. Sin embargo, la precisión actual de la Luna como referencia está limitada a un margen de error del 5 al 10%, lo que resulta insuficiente para las exigentes necesidades de las ciencias climáticas y meteorológicas modernas.
Desde la década de 1990, misiones como SeaWiFS han utilizado la Luna para mejorar el rendimiento radiométrico en órbita. A pesar de sus beneficios, el riesgo asociado con maniobras lunares y la incertidumbre de sus valores absolutos han frenado su adopción más amplia. ARCSTONE tiene como meta superar estas limitaciones y establecer la Luna como el estándar global de calibración en la teledetección.
Objetivos clave de la misión ARCSTONE
El principal objetivo de la misión es reducir la incertidumbre en la reflectancia espectral lunar a menos del 1%. Esto permitiría a la Luna convertirse en una referencia radiométrica confiable para sensores meteorológicos y climáticos pasados, presentes y futuros. La precisión lograda por ARCSTONE será clave para garantizar la comparabilidad de datos entre diferentes misiones y mejorar la estabilidad a largo plazo de los instrumentos en órbita.
Para alcanzar este ambicioso objetivo, el espectrómetro de ARCSTONE medirá la irradiancia lunar y solar en un rango espectral de 350 nm a 2300 nm, con un muestreo espectral de 4 nm. Las observaciones diarias durante un período de tres años permitirán cubrir el espacio mínimo requerido para la libración lunar, un fenómeno que causa variaciones en la perspectiva desde la Tierra.
Impactos económicos y científicos de ARCSTONE
Los beneficios de esta misión van más allá de la precisión científica. Según estudios realizados, las observaciones climáticas de alta calidad tienen el potencial de generar un impacto económico global de aproximadamente 12 billones de dólares en las próximas décadas. Al proporcionar datos más precisos, ARCSTONE ayudará a gobiernos y organizaciones a tomar decisiones mejor informadas para mitigar el cambio climático y desarrollar políticas basadas en evidencia.
Misiones actuales como MODIS, VIIRS y futuras iniciativas como PACE y CLARREO también se beneficiarán de las mediciones de alta precisión de ARCSTONE, mejorando significativamente su rendimiento y resultados científicos. Esto garantizará que la comunidad global cuente con herramientas más robustas para enfrentar los desafíos ambientales del siglo XXI.
Desafíos técnicos y avances en el desarrollo
En términos técnicos, ARCSTONE se encuentra en un nivel de desarrollo experimental 3. El diseño inicial del instrumento ya ha sido completado, y los prototipos han sido probados y caracterizados en el Instituto Nacional de Estándares y Tecnología (NIST) desde 2016. Una vez que se dé luz verde para su desarrollo completo, se estima que la misión podría estar lista para su lanzamiento en un plazo de tres años.
Además, la misión aprovechará los recursos existentes de la NASA, como el Sensor de Irradiancia Total y Espectral (TSIS), para garantizar que las mediciones realizadas en órbita sean trazables al SI. Esto refuerza la capacidad de ARCSTONE para establecer un estándar absoluto de referencia lunar.
Sin embargo, la misión enfrenta algunos desafíos. La necesidad de realizar observaciones diarias durante varios años implica una planificación operativa rigurosa y el diseño de un instrumento altamente resistente. Además, los costos asociados al desarrollo y lanzamiento de satélites siempre son un factor determinante en este tipo de proyectos. A pesar de estos retos, la NASA y sus socios están comprometidos con el éxito de ARCSTONE, dado su inmenso potencial para transformar la teledetección espacial.
Continúa informándote
Así se forma el deslumbrante brillo que rodea a los agujeros negros, según nuevas simulaciones
Nuevas simulaciones recrean cómo el material que cae en los agujeros negros produce un brillo extremo, revelando detalles clave sobre su dinámica y su emisión de luz
La basura espacial amenaza las misiones del futuro, pero nuevas propuestas muestran cómo podría limpiarse la órbita terrestre
La basura espacial crece sin control y amenaza satélites y misiones, pero un nuevo estudio propone modelos económicos y técnicas para hacer viable la limpieza de la órbita terrestre
Desarrollan en Leicester el primer sistema robótico británico para soldar en el espacio
El Reino Unido desarrolla ISPARK, el primer sistema robótico capaz de soldar en el espacio, una tecnología que permitirá reparar y fabricar estructuras orbitales de forma autónoma
Simulan por primera vez cómo se propaga el sonido en Marte usando datos del rover Perseverance
Una nueva simulación basada en datos del rover Perseverance revela cómo se propaga el sonido en Marte y ayuda a entender mejor su atmósfera y el terreno del cráter Jezero
Un nuevo análisis explica por qué Urano mostró un cinturón de radiación electrónica tan intenso durante el sobrevuelo de la Voyager 2
Un nuevo análisis revela que una fuerte perturbación del viento solar pudo intensificar el cinturón de radiación electrónica de Urano durante el paso de la Voyager 2, explicando su comportamiento inusual
Descubren azúcares importantes para la vida en las muestras del asteroide Bennu
Nuevos análisis revelan azúcares esenciales como ribosa y glucosa en muestras de Bennu, reforzando la idea de que los asteroides aportaron ingredientes clave para el origen de la vida