SpaceX lanza 21 satélites Starlink con capacidades Direct to Cell para mejorar la conectividad móvil

SpaceX lanzó con éxito 21 satélites Starlink, de los cuales 13 cuentan con capacidades Direct to Cell, permitiendo mejorar la conectividad móvil en regiones donde la infraestructura terrestre es limitada o inexistente. El despegue se realizó desde el Complejo de Lanzamiento Espacial 40 (SLC-40) en la Estación de la Fuerza Espacial de Cabo Cañaveral, Florida, a las 10:34 p.m. ET del 26 de febrero de 2025.

Autor - Aldo Venuta Rodríguez

3 min lectura

Lanzamiento del cohete Falcon 9 con satélites Starlink incluyendo 13 con capacidades Direct to Cell.
Créditos: SpaceX.

El lanzamiento del Falcon 9 representa un nuevo avance en la expansión de la red Starlink, un sistema de internet satelital desarrollado por SpaceX con el objetivo de ofrecer conectividad global. Con la adición de 13 satélites Direct to Cell, la empresa busca integrar la conectividad satelital con redes móviles terrestres, permitiendo el uso de teléfonos móviles en zonas sin cobertura tradicional.

Esta tecnología es clave para mejorar la cobertura en áreas rurales, marítimas y regiones afectadas por desastres naturales, donde las torres de telecomunicaciones pueden ser insuficientes o estar fuera de servicio. Con los satélites Direct to Cell, los dispositivos móviles convencionales podrán conectarse directamente a la red Starlink sin necesidad de antenas o hardware especializado.

Este fue el primer vuelo del propulsor de la primera etapa utilizado en esta misión. Tras completar su tarea, la etapa regresó a la Tierra y aterrizó exitosamente en el dron autónomo Just Read the Instructions, ubicado en el Océano Atlántico, asegurando su reutilización en futuras misiones. La recuperación de cohetes es un elemento clave en la estrategia de SpaceX para reducir costos y aumentar la frecuencia de lanzamientos.

La cuenta regresiva para el lanzamiento comenzó con la verificación del director de misión 38 minutos antes del despegue. Posteriormente, se inició la carga de RP-1 y oxígeno líquido en la primera etapa, seguida por la carga de oxígeno en la segunda etapa a 16 minutos del despegue. Siete minutos antes del lanzamiento, los motores fueron enfriados, y un minuto antes, el ordenador de vuelo realizó las últimas verificaciones antes del encendido.

Publicidad

El momento de máxima presión aerodinámica (Max Q) ocurrió a 1 minuto y 12 segundos del vuelo. La separación de la primera y segunda etapa se produjo a los 2 minutos y 29 segundos, seguido del encendido del motor de la segunda etapa. La cofia protectora se desprendió a los 3 minutos y 5 segundos de vuelo, mientras la primera etapa realizaba maniobras de reentrada y aterrizaje entre los 6 y 8 minutos posteriores al despegue.

La segunda etapa llevó a cabo un breve encendido de su motor a los 54 minutos del lanzamiento para ajustar la órbita. Finalmente, los 21 satélites Starlink fueron liberados en su posición a 1 hora y 5 minutos después del despegue, completando con éxito la misión.

Con esta operación, SpaceX continúa con la expansión de su constelación Starlink, que ya cuenta con miles de satélites en órbita terrestre baja. La introducción de satélites con conectividad Direct to Cell marca un avance significativo en la integración de redes satelitales y móviles, acercando la posibilidad de una conectividad global sin interrupciones.

Publicidad

Preguntas frecuentes

¿Cuál fue el objetivo del lanzamiento de SpaceX?

La misión desplegó 21 satélites Starlink, incluyendo 13 con capacidades Direct to Cell, para mejorar la conectividad móvil global.

¿Desde dónde se lanzó la misión Starlink?

El Falcon 9 despegó desde el Complejo de Lanzamiento Espacial 40 (SLC-40) en la Estación de la Fuerza Espacial de Cabo Cañaveral, Florida.

¿Cómo se recuperó la primera etapa del Falcon 9?

La primera etapa aterrizó con éxito en el dron Just Read the Instructions en el Océano Atlántico.

¿Cuándo se liberaron los satélites Starlink en órbita?

La liberación de los 21 satélites Starlink ocurrió 1 hora y 5 minutos después del despegue.

Continúa informándote

El cometa interestelar 3I/ATLAS visto como un punto brillante con una cola tenue, captado por la cámara L'LORRI de la sonda Lucy
Espacio

La nave Lucy captura sus primeras imágenes del cometa interestelar 3I/ATLAS

La sonda Lucy de la NASA obtuvo sus primeras imágenes del cometa interestelar 3I/ATLAS mientras el objeto se dirigía hacia Marte, abriendo una oportunidad única para estudiar su estructura y su polvo

Plumas brillantes de hielo y vapor elevándose desde el polo sur de Encélado, captadas por la sonda Cassini
Espacio

La sonda Cassini encuentra materia orgánica recién expulsada del océano de Encélado

Un nuevo análisis de datos de Cassini revela compuestos orgánicos recién expulsados del océano interno de Encélado, ampliando la evidencia de una química activa bajo su capa helada

El telescopio Hubble captó al cometa 3I/ATLAS con una envoltura de polvo en forma de lágrima que se desprende de su núcleo helado
Espacio

Nuevas imágenes del cometa 3I/ATLAS serán presentadas por la NASA en un evento en vivo

La NASA mostrará nuevas imágenes del cometa 3I/ATLAS en un evento en vivo que reunirá datos de misiones espaciales y observatorios terrestres para estudiar este raro visitante interestelar

El cohete SLS y la nave Orion de la misión Artemis I en la plataforma de lanzamiento del Centro Espacial Kennedy, con la luna llena iluminando el fondo nocturno
Espacio

Artemis II: la NASA abre la acreditación de prensa para su próxima misión tripulada a la Luna

La NASA inició la acreditación para los medios que quieran cubrir Artemis II, la misión tripulada que enviará astronautas alrededor de la Luna en 2026 y validará tecnologías clave del programa Artemis

Ilustración espacial que muestra el sistema solar moviéndose a gran velocidad a través del cosmos, con un rastro luminoso y un fondo de radiogalaxias lejanas
Espacio

El sistema solar viaja mucho más rápido de lo que creíamos, según un nuevo mapa del Universo

El nuevo análisis de millones de radiogalaxias sugiere que el sistema solar se mueve tres veces más rápido de lo calculado, poniendo en duda la cosmología estándar

Ilustración del satélite Sentinel-6 Michael Freilich orbitando la Tierra con los paneles solares desplegados
Espacio

Así es Sentinel-6B, el satélite que tomará el relevo en el monitoreo global de los océanos

El satélite Sentinel-6B ampliará la serie global de mediciones del nivel del mar y reforzará la vigilancia del océano con datos más precisos para estudiar el impacto del cambio climático