Cómo el carbono de las placas subducidas altera el equilibrio redox del manto terrestre

El carbono transportado por placas subducidas genera estados redox variables en el manto terrestre, impactando la formación de diamantes y la evolución geológica

El carbono transportado por placas subducidas genera estados redox variables en el manto terrestre, impactando la formación de diamantes y la evolución geológica

6 min lectura

Autor - Aldo Venuta Rodríguez

Ilustración conceptual: debajo de los continentes, el carbono subducido se transforma en diamantes en el manto terrestre.
Créditos: Iceebook

Bajo nuestros pies, el manto terrestre esconde secretos sobre la evolución del planeta y el ciclo del carbono. Si bien la mayor parte de la vida se desarrolla en la superficie, procesos invisibles ocurren a cientos de kilómetros de profundidad, modelando la geodinámica y hasta los recursos minerales que un día pueden llegar a la superficie en forma de diamantes. Uno de los factores menos comprendidos en este escenario es el papel del carbono cuando es arrastrado hacia el interior de la Tierra por las placas subducidas.

Imagina la tectónica de placas como un lento pero gigantesco tapiz móvil. Las zonas donde una placa se desliza por debajo de otra no solo reciclan corteza, sino que también transportan materiales como carbonatos, rocas cargadas de carbono, hacia las profundidades del manto. Allí, el ambiente es extremo y los minerales se comportan de maneras inesperadas, desencadenando transformaciones químicas que pueden tener consecuencias globales.

Hasta hace poco, los científicos asumían que el estado redox del manto –es decir, el equilibrio entre componentes oxidados y reducidos– se mantenía relativamente homogéneo en profundidad, marcado por la presencia de hierro metálico y una caída de la fugacidad del oxígeno. Sin embargo, experimentos recientes liderados por el equipo de Mingdi Gao y colaboradores han demostrado que la realidad es mucho más compleja y variable.

La clave está en cómo las carbonatitas –rocas fundidas ricas en carbono– interactúan con la peridotita del manto que contiene hierro metálico. Cuando una placa oceánica cargada de carbonatos desciende, el calor y la presión extremos liberan fundidos de carbonatita que reaccionan con el entorno. Según el estudio publicado en Science Advances, estos procesos generan un mosaico de estados redox en el manto profundo, creando tanto dominios oxidados como reducidos a escalas sorprendentemente pequeñas.

Una de las pruebas más fascinantes de este fenómeno la encontramos en los diamantes sublitosféricos, formados a profundidades de entre 250 y 700 kilómetros. Las inclusiones minerales dentro de estos diamantes, como la majorita y la ferropericlasa, son verdaderos testigos de las condiciones en las que cristalizaron. Comparar la química de estas inclusiones con los resultados de laboratorio ha permitido reconstruir el entorno redox de su formación, y revela marcadas diferencias entre regiones como el Cratón de Amazonia en Brasil y el Cratón de Kaapvaal en África.

En zonas sin penacho del manto, el carbono de la placa subducida tiende a congelarse en forma de diamante, estabilizando la litosfera y contribuyendo a la longevidad de los cratones. Por el contrario, en regiones atravesadas por penachos calientes –columnas de material ascendente desde las profundidades– los fundidos de carbonatita superan la capacidad del entorno para mantener el equilibrio redox, oxidando el manto y desencadenando procesos como la delaminación de la litosfera o el vulcanismo.

El ciclo profundo del carbono no solo es un actor en la formación de diamantes, sino que también condiciona la estabilidad de los continentes más antiguos y robustos del planeta. Los cratones, esas raíces continentales que han sobrevivido miles de millones de años, deben parte de su resiliencia a la interacción química entre el carbono transportado y la roca del manto, lo que favorece la creación de dominios estables y la conservación de diamantes durante escalas geológicas largas.

No todas las historias del manto tienen el mismo final. En el caso del Cratón Kaapvaal, la infiltración de material oxidado y fundidos ricos en CO2 debilitó la base de la litosfera, provocando que fragmentos se desprendieran y ascendieran a la superficie mediante erupciones volcánicas, como las famosas kimberlitas. Así, el viaje del carbono desde la superficie hasta las profundidades y de regreso es fundamental para la formación de ciertos depósitos minerales y la actividad volcánica.

El análisis de inclusiones en diamantes revela que el manto bajo el Cratón Amazonia es mayormente reducido, mientras que bajo Kaapvaal predominan ambientes oxidados. Estos contrastes están relacionados con diferencias en la historia tectónica, la presencia de penachos y la cantidad de carbono transportado por placas subducidas, según explica Yu Wang, coautor del estudio.

A través de experimentos a altísimas presiones, los investigadores han conseguido simular las reacciones que tienen lugar a cientos de kilómetros de profundidad, ofreciendo un laboratorio a escala reducida del interior de la Tierra. Sus resultados indican que la capacidad del manto para transformar el carbono depende no solo de la temperatura y la presión, sino del flujo de fundidos y del hierro metálico disponible para amortiguar cambios químicos.

En escenarios sin penacho, la mayor parte del carbono acaba convertido en diamante o atrapado como carbono reducido, lo que fortalece la estabilidad de los cratones y ralentiza procesos erosivos. Pero cuando el manto está perturbado por calor adicional, como sucede en presencia de plumas ascendentes, los fundidos ricos en carbono pueden moverse hacia arriba, oxidar la litosfera y promover el vulcanismo, afectando la topografía y el ciclo geológico de grandes regiones.

Este hallazgo tiene implicaciones no solo para la geología académica, sino para la comprensión de la habitabilidad planetaria. El equilibrio redox del manto influye en la liberación de gases volátiles y en la estabilidad de la superficie, aspectos cruciales para el desarrollo de una atmósfera estable y el surgimiento de la vida tal como la conocemos.

El estudio también ayuda a explicar por qué los diamantes hallados en diferentes partes del mundo presentan inclusiones minerales tan variadas. Cada diamante es como una cápsula del tiempo que preserva la firma química del entorno donde cristalizó, ofreciendo una ventana al pasado profundo del planeta.

Para el futuro, comprender los estados redox variables del manto permitirá afinar modelos sobre la evolución de los continentes, el ciclo profundo del carbono y el potencial de hallazgo de recursos minerales estratégicos, como diamantes o metales asociados a procesos profundos.

Como señala Stephen F. Foley, experto en geoquímica, “el manto es mucho más dinámico y heterogéneo de lo que imaginábamos. El carbono no solo alimenta la vida en la superficie, sino que también controla la respiración profunda de la Tierra, con efectos de largo alcance”.

En definitiva, la interacción entre el carbono transportado por las placas subducidas y el manto terrestre es un proceso fundamental para entender la evolución de nuestro planeta. La ciencia sigue desenterrando estos misterios, recordándonos que la historia de la Tierra es mucho más profunda de lo que podemos ver a simple vista.

Referencias: Science Advances

No hemos podido validar su suscripción.
Se ha realizado su suscripción.

Recibe el boletín de Iceebook

Las noticias más importantes del planeta, ciencia, espacio y tecnología, directamente en tu bandeja de entrada. Sin ruido, solo lo esencial.

Preguntas frecuentes

💬 Se refiere al equilibrio entre especies químicas oxidadas y reducidas en las rocas del manto profundo.
💬 El carbono transportado puede transformarse en diamante bajo alta presión y condiciones químicas reductoras.
💬 Aportan calor extra y favorecen la oxidación, alterando la composición y promoviendo el vulcanismo.
💬 La interacción carbono-manto favorece la estabilidad o debilidad de los cratones, influyendo en la geodinámica.

Continúa informándote

Equipo científico a bordo del barco elevador L/B Robert, en su primera rotación de trabajo
Planeta Tierra

Comienza una expedición internacional para analizar acuíferos marinos bajo el lecho oceánico

Un equipo científico internacional perfora el fondo marino frente a Nueva Inglaterra para investigar reservas ocultas de agua dulce bajo el océano

Microcontrolador central conectado a dispositivos inteligentes
Tecnología

Sistemas embebidos: la tecnología invisible que impulsa los dispositivos de la vida diaria

Los sistemas embebidos permiten que electrodomésticos, autos y teléfonos funcionen de manera inteligente y eficiente, aunque pasen desapercibidos

Vista satelital del delta del Ganges en tonalidades multiespectrales
Planeta Tierra

Bangladesh enfrenta mayor salinidad en el delta de Bengala por la subida del nivel del mar

El aumento del nivel del mar está intensificando la salinización en el delta de Bengala, poniendo en riesgo agua dulce, agricultura y comunidades costeras

Representación artística de microorganismos en un entorno alienígena submarino
Ciencia

¿Es posible la vida en otros planetas? Las condiciones mínimas y lo que dice la ciencia

Científicos exploran qué condiciones mínimas harían posible la vida en otros planetas y qué nos revelan los últimos descubrimientos astronómicos

Reconstrucción artística de Traskasaura sandrae cazando amonites en el océano durante el Cretácico Superior.
Ciencia

Un extraño elasmosaurio del Cretácico tardío es reconocido como el fósil de Columbia Británica

Un elasmosaurio con una singular mezcla de rasgos es nombrado fósil provincial de Columbia Británica tras su hallazgo en la isla de Vancouver

Gavilán de Cooper adulto con su presa, un gorrión, tras una caza exitosa.
Planeta Tierra

Un gavilán de Cooper muestra inteligencia al asociar señales de tráfico con nuevas oportunidades de caza

Un gavilán de Cooper joven emplea el tráfico y las señales urbanas para cazar aves, mostrando una notable capacidad de adaptación en la ciudad

Simulación de modelos del cielo y observaciones realizadas con el radiotelescopio ALMA.
Espacio

Detectan fuentes de baja masa y extraños índices espectrales en tres nubes de la zona central de la Vía Láctea

Un censo con ALMA revela cientos de fuentes de baja masa y comportamientos espectrales inesperados en tres nubes de la región central de la Vía Láctea.

La Luna llena fotografiada en alta resolución mostrando detalles de su superficie desde la Tierra.
Ciencia

Rocas lunares altamente magnéticas se deben a un antiguo impacto y a un campo magnético residual

Un antiguo impacto y un campo magnético débil explican el magnetismo en algunas rocas lunares según un estudio del MIT, resolviendo un misterio lunar

Murciélago frugívoro egipcio, modelo de investigación en inmunidad viral
Planeta Tierra

Investigadores revelan mecanismos únicos de defensa antiviral en murciélagos

Nuevos estudios con organoides muestran que los murciélagos poseen defensas antivirales innatas excepcionales frente a virus zoonóticos peligrosos

Superficie del Salar de Uyuni con patrones geométricos naturales formados por la sal, bajo el sol boliviano.
Ciencia

El litio de los salares sudamericanos muestra una química sorprendente dominada por el boro

El boro domina la química de los salares de litio sudamericanos, lo que redefine la extracción del mineral y plantea retos para la sostenibilidad futura